here's some dummy data:
user_id date category
27 2016-01-01 apple
27 2016-01-03 apple
27 2016-01-05 pear
27 2016-01-07 plum
27 2016-01-10 apple
27 2016-01-14 pear
27 2016-01-16 plum
11 2016-01-01 apple
11 2016-01-03 pear
11 2016-01-05 pear
11 2016-01-07 pear
11 2016-01-10 apple
11 2016-01-14 apple
11 2016-01-16 apple
I'd like to calculate for each user_id
the number of distinct categories
in the specified time period (e.g. in the past 7, 14 days), including the current order
The solution would look like this:
user_id date category distinct_7 distinct_14
27 2016-01-01 apple 1 1
27 2016-01-03 apple 1 1
27 2016-01-05 pear 2 2
27 2016-01-07 plum 3 3
27 2016-01-10 apple 3 3
27 2016-01-14 pear 3 3
27 2016-01-16 plum 3 3
11 2016-01-01 apple 1 1
11 2016-01-03 pear 2 2
11 2016-01-05 pear 2 2
11 2016-01-07 pear 2 2
11 2016-01-10 apple 2 2
11 2016-01-14 apple 2 2
11 2016-01-16 apple 1 2
I posted similar questions here or here, however none of it referred to counting cumulative unique values for the specified time period. Thanks a lot for your help!
In the tidyverse, you can use map_int
to iterate over a set of values and simplify to an integer à la sapply
or vapply
. Count distinct occurrences with n_distinct
(like length(unique(...))
) of an object subset by comparisons or the helper between
, with a minimum set by the appropriate amount subtracted from that day, and you're set.
library(tidyverse)
df %>% group_by(user_id) %>%
mutate(distinct_7 = map_int(date, ~n_distinct(category[between(date, .x - 7, .x)])),
distinct_14 = map_int(date, ~n_distinct(category[between(date, .x - 14, .x)])))
## Source: local data frame [14 x 5]
## Groups: user_id [2]
##
## user_id date category distinct_7 distinct_14
## <int> <date> <fctr> <int> <int>
## 1 27 2016-01-01 apple 1 1
## 2 27 2016-01-03 apple 1 1
## 3 27 2016-01-05 pear 2 2
## 4 27 2016-01-07 plum 3 3
## 5 27 2016-01-10 apple 3 3
## 6 27 2016-01-14 pear 3 3
## 7 27 2016-01-16 plum 3 3
## 8 11 2016-01-01 apple 1 1
## 9 11 2016-01-03 pear 2 2
## 10 11 2016-01-05 pear 2 2
## 11 11 2016-01-07 pear 2 2
## 12 11 2016-01-10 apple 2 2
## 13 11 2016-01-14 apple 2 2
## 14 11 2016-01-16 apple 1 2