As division operation (/) is expensive in case of FPGA ? Is it possible to perform division of two Q15 format numbers(16 bit fixed point number) with basic shift operations?
Could someone help me by providing some example?
Thanks in advance!
Fixed-point arithmetic is just integer arithmetic with a bit of scaling thrown in. Q15 is a purely fractional format stored as a signed 16-bit integer with scale factor of 215, able to represent values in the interval [-1, 1). Clearly, division only makes sense in Q15 when the divisor's magnitude exceeds the dividend's magnitude, as otherwise the quotient's magnitude exceeds the representable range.
Before embarking on a custom Verilog implementation of fixed-point division, you would want to check your FPGA vendor's library offerings as a fixed-point library including pipeline division is often available. There are also opens source projects that may be relevant, such as this one.
When using integer division operators for fixed-point division, we need to adjust for the fact that the division will remove the scale factor, i.e (a * 2scale) / (b * 2scale) = (a/b), while the correct fixed-point result is (a/b * 2scale). This is easily fixed by pre-multiplying the dividend by 2scale, as in the following C implementation:
int16_t div_q15 (int16_t dividend, int16_t divisor)
{
return (int16_t)(((int32_t)dividend << 15) / (int32_t)divisor);
}
Wikipedia gives a reasonable overwiew on how to implement binary division on a bit-by-bit basis using add, subtract, and shift operations. These methods are closely related to the longhand division taught in grade school. For FPGAs, the use of the non-restoring method if often preferred, as pointed out by this paper, for example:
Nikolay Sorokin, "Implementation of high-speed fixed-point dividers on FPGA". Journal of Computer Science & Technology, Vol. 6, No. 1, April 2006, pp. 8-11.
Here is C code that shows how the non-restoring method may be used for the division of 16-bit two's-complement operands:
/* bit-wise non-restoring two's complement division */
void int16_div (int16_t dividend, int16_t divisor, int16_t *quot, int16_t *rem)
{
const int operand_bits = (int) (sizeof (int16_t) * CHAR_BIT);
uint16_t d = (uint16_t)divisor;
uint16_t nd = 0 - d; /* -divisor */
uint16_t r, q = 0; /* remainder, quotient */
uint32_t dd = (uint32_t)d << operand_bits; /* expanded divisor */
uint32_t pp = dividend; /* partial remainder */
int i;
for (i = operand_bits - 1; i >= 0; i--) {
if ((int32_t)(pp ^ dd) < 0) {
q = (q << 1) + 0; /* record quotient bit -1 (as 0) */
pp = (pp << 1) + dd;
} else {
q = (q << 1) + 1; /* record quotient bit +1 (as 1) */
pp = (pp << 1) - dd;
}
}
/* convert quotient from digit set {-1,1} to plain two's complement */
q = (q << 1) + 1;
/* remainder is upper half of partial remainder */
r = (uint16_t)(pp >> operand_bits);
/* fix up cases where we worked past a partial remainder of zero */
if (r == d) { /* remainder equal to divisor */
q = q + 1;
r = 0;
} else if (r == nd) { /* remainder equal to -divisor */
q = q - 1;
r = 0;
}
/* for truncating division, remainder must have same sign as dividend */
if (r && ((int16_t)(dividend ^ r) < 0)) {
if ((int16_t)q < 0) {
q = q + 1;
r = r - d;
} else {
q = q - 1;
r = r + d;
}
}
*quot = (int16_t)q;
*rem = (int16_t)r;
}
Note that there are multiple ways of dealing with the various special cases that arise in non-restoring division. For example, one frequently sees code that detects a zero partial remainder pp
and exits the loop over the quotient bits early in this case. Here I assume that an FPGA implementation would unroll the loop completely to create a pipelined implementation, in which case early termination is not helpful. Instead, a final correction is applied to those quotients that are affected by ignoring a partial remainder of zero.
In order to create a Q15 division from the above, we have to make just a single change: incorporating the up-scaling of the dividend. Instead of:
uint32_t pp = dividend; /* partial remainder */
we now use this:
uint32_t pp = dividend << 15; /* partial remainder; incorporate Q15 scaling */
The resulting C code (sorry, I won't provide read-to-use Verilog code) including the test framework is:
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#include <math.h>
/* bit-wise non-restoring two's complement division */
void q15_div (int16_t dividend, int16_t divisor, int16_t *quot, int16_t *rem)
{
const int operand_bits = (int) (sizeof (int16_t) * CHAR_BIT);
uint16_t d = (uint16_t)divisor;
uint16_t nd = 0 - d; /* -divisor */
uint16_t r, q = 0; /* remainder, quotient */
uint32_t dd = (uint32_t)d << operand_bits; /* expanded divisor */
uint32_t pp = dividend << 15; /* partial remainder, incorporate Q15 scaling */
int i;
for (i = operand_bits - 1; i >= 0; i--) {
if ((int32_t)(pp ^ dd) < 0) {
q = (q << 1) + 0; /* record quotient bit -1 (as 0) */
pp = (pp << 1) + dd;
} else {
q = (q << 1) + 1; /* record quotient bit +1 (as 1) */
pp = (pp << 1) - dd;
}
}
/* convert quotient from digit set {-1,1} to plain two's complement */
q = (q << 1) + 1;
/* remainder is upper half of partial remainder */
r = (uint16_t)(pp >> operand_bits);
/* fix up cases where we worked past a partial remainder of zero */
if (r == d) { /* remainder equal to divisor */
q = q + 1;
r = 0;
} else if (r == nd) { /* remainder equal to -divisor */
q = q - 1;
r = 0;
}
/* for truncating division, remainder must have same sign as dividend */
if (r && ((int16_t)(dividend ^ r) < 0)) {
if ((int16_t)q < 0) {
q = q + 1;
r = r - d;
} else {
q = q - 1;
r = r + d;
}
}
*quot = (int16_t)q;
*rem = (int16_t)r;
}
int main (void)
{
uint16_t dividend, divisor, ref_q, res_q, res_r;
double quot, fxscale = (1 << 15);
dividend = 0;
do {
printf ("\r%04x", dividend);
divisor = 1;
do {
quot = trunc (fxscale * (int16_t)dividend / (int16_t)divisor);
/* Q15 can only represent numbers in [-1, 1) */
if ((quot >= -1.0) && (quot < 1.0)) {
ref_q = (int16_t)((((int32_t)(int16_t)dividend) << 15) /
((int32_t)(int16_t)divisor));
q15_div ((int16_t)dividend, (int16_t)divisor,
(int16_t *)&res_q, (int16_t *)&res_r);
if (res_q != ref_q) {
printf ("!r dividend=%04x (%f) divisor=%04x (%f) res=%04x (%f) ref=%04x (%f)\n",
dividend, (int16_t)dividend / fxscale,
divisor, (int16_t)divisor / fxscale,
res_q, (int16_t)res_q / fxscale,
ref_q, (int16_t)ref_q / fxscale);
}
}
divisor++;
} while (divisor);
dividend++;
} while (dividend);
return EXIT_SUCCESS;
}