Given a weighted, connected, simple undirected graph G with weights of only 1 and 2 on each edge
I want to implement Prim's algorithm this way:
the weights are either 1 or 2, so I can simply store the edges in 2 separate lists, one for edges with weight 1, and the second for edges with weight 2.
To find the edge with lowest weight I simply take one from the first list, unless it is empty, in which case I take an edge from the second list.
Accessing and deleting an element from a list is O(1) so Prim's algorithm will run in O(V+E).
package il.ac.oranim.alg2016;
import edu.princeton.cs.algs4.*;
public class MST12 {
private int weight; // weight of the tree
private Edge[] mstEdges; // use this to store the edges of your Minimum Spanning Tree
public MST12(EdgeWeightedGraph G, int s) throws IndexOutOfBoundsException, DisconnectedGraphException, WrongWeightException {
// check that the starting vertex is in the range 0,1,...,G.V()
if (s < 0 || s >= G.V()) {
throw new IndexOutOfBoundsException();
}
// check that the input graph is connected otherwise there is no (minimum) spanning tree
if (isConnected(G) == false) {
throw new DisconnectedGraphException();
}
// check that all the weights are 1 or 2
for (Edge e : G.edges()) {
if (e.weight() != 1 && e.weight() != 2) {
throw new WrongWeightException();
}
}
this.weight = 0; // make sure you update this value
// replace -->
// your code goes here
// <-- replace
}
// returns the weight of the tree
public int weight() {
return this.weight;
}
// checks whether a graph is connected
private static boolean isConnected(EdgeWeightedGraph G) {
// create a graph of class Graph with the same edges (weights)
Graph g = new Graph(G.V());
for (Edge e : G.edges()) {
int v = e.either();
g.addEdge(v, e.other(v));
}
// compute the connected components of the graph
CC cc = new CC(g);
// return true iff there is only one connected component
return cc.count() == 1;
}
/**
* Returns the edges in a minimum spanning tree as
* an iterable of edges
*/
public Iterable<Edge> edges() {
Queue<Edge> edges = new Queue<Edge>();
for (int i = 0; i < this.mstEdges.length; i++) {
Edge e = this.mstEdges[i];
int v = e.either();
edges.enqueue(new Edge(v, e.other(v), e.weight()));
}
return edges;
}
/**
* test the computing of an MST of a graph with weights 1 and 2 only
* the first argument is the name of the file that contains the graph (graph1.txt, graph2.txt, or graph3.txt)
* you can define this argument in Run.. --> (x)=Arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
PrimMST primMST = new PrimMST(G);
MST12 mst12 = null;
try {
mst12 = new MST12(G,0);
}
catch (DisconnectedGraphException e) {
System.err.println("the input graph is not connected and hence has no (minimum) spanning tree");
}
catch (WrongWeightException e) {
System.err.println("not all weights in the input graph are 1 or 2");
}
System.out.println("Prim's MST weight = " + primMST.weight());
System.out.println("My MST's weight = " + mst12.weight());
}
}
I am stuck at the part of
//replace-->//your code goes here//replace<--
two classes that needed:
package il.ac.oranim.alg2016;
public class DisconnectedGraphException extends Exception {
public DisconnectedGraphException() {}
}
and
package il.ac.oranim.alg2016;
public class WrongWeightException extends Exception {
public WrongWeightException() {}
}
Also I'm allowed to use all this http://algs4.cs.princeton.edu/code/
can someone help me please with this part
//replace-->//your code goes here//replace<--
I tried to copy This code to the //<--relpace,//replace-->
part and then to feet it, to change it from using a heap to two lists.
Pseudocode of Prim's algorithm
In other words I need code for this:
package il.ac.oranim.alg2016;
import edu.princeton.cs.algs4.*;
public class MST_12
{
private int weight; // weight of the tree
private Edge[] mstEdges; // MST edges
private boolean[] marked;// MST vertices
private Queue<Edge> queueWeight1;
private Queue<Edge> queueWeight2;
public MST_12(EdgeWeightedGraph G, int s) throws IndexOutOfBoundsException, DisconnectedGraphException, WrongWeightException
{
// check that the starting vertex is in the range 0,1,...,G.V()
if (s < 0 || s >= G.V()) {
throw new IndexOutOfBoundsException();
}
// check that the input graph is connected otherwise there is no (minimum) spanning tree
if (isConnected(G) == false) {
throw new DisconnectedGraphException();
}
// check that all the weights are 1 or 2
for (Edge e : G.edges()) {
if (e.weight() != 1 && e.weight() != 2) {
throw new WrongWeightException();
}
}
this.weight = 0; // make sure you update this value
// replace -->
queueWeight1 = new Queue<Edge>();
queueWeight2 = new Queue<Edge>();
mstEdges=new Edge[G.V()];
marked=new boolean[G.V()];
for (int v = 0; v < G.V(); v++) // run from each vertex to find
if (!marked[v]) KPrim(G,v);// minimum spanning forest
}
private void KPrim ( EdgeWeightedGraph G, int s)
{
visit(G,s);
while (!queueWeight1.isEmpty()||!queueWeight2.isEmpty()){
Edge e=null;
if (!queueWeight1.isEmpty())
{ e=queueWeight1.dequeue();}
else if (!queueWeight2.isEmpty()){e=queueWeight2.dequeue();}
int v=e.either(), w=e.other(v);
assert marked [v]||marked [w];
if(marked[v]&&marked[w]) continue;
mstEdges[s]=e;
weight+=e.weight();
if(!marked[v]) visit(G,v);// v becomes part of tree
if(!marked[w]) visit(G,w);// w becomes part of a tree
}
}
//add all edges e incident to v onto queue if the other endpoint has not yet been scanned
private void visit (EdgeWeightedGraph G, int v)
{
marked[v]=true;// add v to T
for (Edge e : G.adj(v))// for each edge e=v-w, add to queueWeight if w not already in T
{
if(!marked[e.other(v)]) {
if (e.weight()==1.0) {queueWeight1.enqueue(e);mstEdges[v]=e;}//add the smallest edge weight to the mst weight
else {queueWeight2.enqueue(e);mstEdges[v]=e;}}}
}
// <-- replace
// returns the weight of the tree
public int weight() {
return this.weight;
}
// checks whether a graph is connected
private static boolean isConnected(EdgeWeightedGraph G) {
// create a graph of class Graph with the same edges (weights)
Graph g = new Graph(G.V());
for (Edge e : G.edges()) {
int v = e.either();
g.addEdge(v, e.other(v));
}
// compute the connected components of the graph
CC cc = new CC(g);
// return true iff there is only one connected component
return cc.count() == 1;
}
/**
* Returns the edges in a minimum spanning tree as
* an iterable of edges
*/
public Iterable<Edge> edges() {
Queue<Edge> edges = new Queue<Edge>();
for (int i = 0; i < this.mstEdges.length; i++) {
Edge e = this.mstEdges[i];
int v = e.either();
edges.enqueue(new Edge(v, e.other(v), e.weight()));
}
return edges;
}
/**
* test the computing of an MST of a graph with weights 1 and 2 only
* the first argument is the name of the file that contains the graph (graph1.txt, graph2.txt, or graph3.txt)
* you can define this argument in Run.. --> (x)=Arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
PrimMST primMST = new PrimMST(G);
MST_12 mst12 = null;
try {
mst12 = new MST_12(G,0);
}
catch (DisconnectedGraphException e) {
System.err.println("the input graph is not connected and hence has no (minimum) spanning tree");
}
catch (WrongWeightException e) {
System.err.println("not all weights in the input graph are 1 or 2");
}
System.out.println("Prim's MST weight = " + primMST.weight());
System.out.println("My MST's weight = " + mst12.weight());
}
}