I'm trying to implement Sarsa algorithm for solving a Frozen Lake environment from OpenAI gym. I've started soon to work with this but I think I understand it.
I also understand how Sarsa algorithm works, there're many sites where to find a pseudocode, and I get it. I've implemented this algorithm in my problem following all the steps, but when I check the final Q function after all the episodes I notice that all values tend to zero and I don't know why.
Here is my code, I hope someone can tell me why that happens.
import gym
import random
import numpy as np
env = gym.make('FrozenLake-v0')
#Initialize the Q matrix 16(rows)x4(columns)
Q = np.zeros([env.observation_space.n, env.action_space.n])
for i in range(env.observation_space.n):
if (i != 5) and (i != 7) and (i != 11) and (i != 12) and (i != 15):
for j in range(env.action_space.n):
Q[i,j] = np.random.rand()
#Epsilon-Greedy policy, given a state the agent chooses the action that it believes has the best long-term effect with probability 1-eps, otherwise, it chooses an action uniformly at random. Epsilon may change its value.
bestreward = 0
epsilon = 0.1
discount = 0.99
learning_rate = 0.1
num_episodes = 50000
a = [0,0,0,0,0,0,0,0,0,0]
for i_episode in range(num_episodes):
# Observe current state s
observation = env.reset()
currentState = observation
# Select action a using a policy based on Q
if np.random.rand() <= epsilon: #pick randomly
currentAction = random.randint(0,env.action_space.n-1)
else: #pick greedily
currentAction = np.argmax(Q[currentState, :])
totalreward = 0
while True:
env.render()
# Carry out an action a
observation, reward, done, info = env.step(currentAction)
if done is True:
break;
# Observe reward r and state s'
totalreward += reward
nextState = observation
# Select action a' using a policy based on Q
if np.random.rand() <= epsilon: #pick randomly
nextAction = random.randint(0,env.action_space.n-1)
else: #pick greedily
nextAction = np.argmax(Q[nextState, :])
# update Q with Q-learning
Q[currentState, currentAction] += learning_rate * (reward + discount * Q[nextState, nextAction] - Q[currentState, currentAction])
currentState = nextState
currentAction = nextAction
print "Episode: %d reward %d best %d epsilon %f" % (i_episode, totalreward, bestreward, epsilon)
if totalreward > bestreward:
bestreward = totalreward
if i_episode > num_episodes/2:
epsilon = epsilon * 0.9999
if i_episode >= num_episodes-10:
a.insert(0, totalreward)
a.pop()
print a
for i in range(env.observation_space.n):
print "-----"
for j in range(env.action_space.n):
print Q[i,j]
When a episode ends you are breaking the while loop before updating the Q function. Therefore, when the reward received by the agent is different from zero (the agent has reached the goal state), the Q function is never updated in that reward.
You should check for the end of the episode in the last part of the while loop.