I want to determine a point in space by geometry and I have math computations that gives me several theta values. After evaluating the theta values, I could get N 1 x 3 dimension matrix where N is the number of theta evaluated. Since I have my targeted point, I only need to decide which of the matrices is closest to the target with adequate focus on the three coordinates (x,y,z). Take a view of the analysis in the figure below:
Fig 1: Determining Closest Point with all points having minimal error
It can easily be seen that the third matrix is closest using sum(abs(Matrix[x,y,z])).
However, if the method is applied on another figure given below, obviously, the result is wrong.
Fig 2: One Point has closest values with 2-axes of the reference point
Looking at point B, it is closer to the reference point on y-,z- axes but just that it strayed greatly on x-axis.
So how can I evaluate the matrices and select the closest one to point of reference and adequate emphasis will be on error differences in all coordinates (x,y,z)?
If your results is in terms of (x,y,z), why don't evaluate the euclidean distance of each matrix you have obtained from the reference point?
Sort of matlab code:
Ref_point = [48.98, 20.56, -1.44];
Curr_point = [x,y,z];
Xd = (x-Ref_point(1))^2 ;
Yd = (y-Ref_point(2))^2 ;
Zd = (z-Ref_point(3))^2 ;
distance = sqrt(Xd + Yd + Zd);
%find the minimum distance