I am trying to play with CRTP with a custom matrix class. Now I am trying to overloading the ostream operator, follow https://msdn.microsoft.com/en-us/library/1z2f6c2k.aspx.
However, everything seems to be compiling but the program never exists and prints nothing on the screen. I am scratching my head as what is happening.
Anyway, this is the relevant code (Sorry it is a bit lengthy)
#ifndef EXPERIMENT_POINTERMATRIX_H
#define EXPERIMENT_POINTERMATRIX_H
#include <cstdlib>
#include <ostream>
#include "macro.h"
namespace PM {
template<typename T, typename Derived>
class MatrixBase{
public:
size_t nRow;
size_t nCol;
MatrixBase(const size_t nRow_,const size_t nCol_):nRow(nRow_), nCol(nCol_){}
Derived& derived(){
return *static_cast<Derived*>(this);
}
const Derived& derived() const{
return *static_cast<Derived*>(this);
}
T& operator()(const size_t i, const size_t j){
CHECK_BOUND(i,j,*this);
return derived().operator()(i,j);
}
const T& operator()(const size_t i, const size_t j) const {
return const_cast<T&>(
static_cast<const MatrixBase<T, Derived>&>(*this).operator()(i,j));
}
inline T rows(){
return nRow;
}
const T rows() const {
return nRow;
}
inline T cols(){
return nCol;
}
const T cols() const {
return nCol;
}
template<typename t1, typename t2>
friend std::ostream& operator<<(std::ostream& os, const MatrixBase<t1, t2> & matrix);
};
template<typename t1, typename t2>
std::ostream& operator<<(std::ostream& os, const MatrixBase<t1, t2>& matrix){
for (size_t i =0;i<matrix.rows();i++){
os << matrix(i,0);
if (matrix.cols()>1) {
for (size_t j = 1; j < matrix.cols(); j++) {
os << "," << matrix(i, j);
}
}
os << std::endl;
}
return os;
};
template<typename T, typename Derived>
class Matrix : public MatrixBase<T, Matrix<T, Derived>>{
public:
T * data;
Matrix(const size_t nRow, const size_t nCol):MatrixBase<T, Matrix<T, Derived>>(nRow, nCol){
data = (T*) malloc(sizeof(T)*nRow*nCol);
}
~Matrix(){
free(data);
}
Derived& derived(){
return *static_cast<Derived*>(this);
}
const Derived& derived() const{
return *static_cast<Derived*>(this);
}
T& operator()(const size_t i, const size_t j){
return derived().operator()(i,j);
}
};
template<typename T, typename Derived>
class MatrixView : public MatrixBase<T, MatrixView<T, Derived>>{
public:
T * data;
MatrixView(const size_t nRow, size_t nCol, T * other):MatrixBase<T, MatrixView<T, Derived>>(nRow, nCol), data(other){}
T& operator()(const size_t i, const size_t j){
return derived().operator()(i,j);
}
Derived& derived(){
return *static_cast<Derived*>(this);
}
const Derived& derived() const{
return *static_cast<Derived*>(this);
}
};
template<typename T>
class MatrixRowMajor: public Matrix<T, MatrixRowMajor<T>>{
public:
MatrixRowMajor(const size_t nRow, const size_t nCol):Matrix<T, MatrixRowMajor<T>>(nRow, nCol){}
T& operator()(const size_t i, const size_t j){
using base = MatrixBase<T, Matrix<T, MatrixRowMajor<T>>>;
using super = Matrix<T, MatrixRowMajor<T>>;
return super::data[i*base::nCol+j];
}
};
template<typename T>
class MatrixColMajor: public Matrix<T, MatrixColMajor<T>>{
public:
MatrixColMajor(const size_t nRow, const size_t nCol):Matrix<T, MatrixColMajor<T>>(nRow, nCol){}
T& operator()(const size_t i, const size_t j){
using base = MatrixBase<T, Matrix<T, MatrixColMajor<T>>>;
using super = Matrix<T, MatrixColMajor<T>>;
return super::data[i+j*base::nRow];
}
};
template<typename T>
class MatrixViewRowMajor : public MatrixView<T, MatrixViewRowMajor<T>>{
public:
MatrixViewRowMajor(const size_t nRow, const size_t nCol, T* other):MatrixView<T, MatrixViewRowMajor<T>>(nRow, nCol, other){}
T& operator()(const size_t i, const size_t j){
using base = MatrixBase<T, Matrix<T, MatrixViewRowMajor<T>>>;
using super = MatrixView<T, MatrixViewRowMajor<T>>;
return super::data[i*base::nCol+j];
}
};
template<typename T>
class MatrixViewColMajor : public MatrixView<T, MatrixViewColMajor<T>>{
public:
MatrixViewColMajor(const size_t nRow, const size_t nCol, T* other):MatrixView<T, MatrixViewRowMajor<T>>(nRow, nCol, other){}
T& operator()(const size_t i, const size_t j){
using base = MatrixBase<T, Matrix<T, MatrixViewRowMajor<T>>>;
using super = MatrixView<T, MatrixViewRowMajor<T>>;
return super::data[i+j*base::nRow];
}
};
}
void test_print(){
using namespace PM;
using namespace std;
MatrixRowMajor<double> matrix(10, 1);
for (int i =0;i<matrix.rows();i++){
matrix(i,0)=1.0;
std::cout << "i'th entry is " <<matrix(i,0) << std::endl; //This is fine
}
std::cout << matrix; //This is not fine
}
#endif //EXPERIMENT_POINTERMATRIX_H
The whole program is compiled using g++4.9 (enabling c++11)
EDIT: In order to test whether it is the problem of the operator, I create the following methods (at MatrixBase):
void print(){
for (size_t i =0;i<this->rows();i++){
std::cout << this->operator()(i,0);
if (this->cols()>1) {
for (size_t j = 1; j < this->cols(); j++) {
std::cout << "," << this->operator()(i, j);
}
}
std::cout << std::endl;
}
}
and call the methods like matrix.print(). This works as expected.
Unfortunately, the debugger gives no useful information as the program stops in the line os << matrix(i,0), and when I stop the program to retrieve the information, it says fails to get the frame (Clion as debugger)
The (member function of MatrixBase
) operator()
unconditionally calls itself, so is infinitely recursive.
const T& operator()(const size_t i, const size_t j) const {
return const_cast<T&>(
static_cast<const MatrixBase<T, Derived>&>(*this).operator()(i,j));
}
This function is tail-recursive, so can result in an infinite loop rather than crashing due to great call depths.
Unrelated to your question, it is usually considered inadvisable to use malloc()
in C++ - particularly when working with types (e.g. C++ classes) that may not be directly compatible with C - results, for the user of your class, depending on the type T
, can be undefined. Use operator new
instead. Even better, use a standard container.