I know how to add token definitions with an identifier:
this->self.add(identifier, ID_IDENTIFIER);
And I know how to add token definitions with a semantic action:
this->self += whitespace [ lex::_pass = lex::pass_flags::pass_ignore ];
Unfortunately this doesn't work:
this->self.add(whitespace
[ lex::_pass = lex::pass_flags::pass_ignore ],
ID_IDENTIFIER);
It gives an error that the token can't be converted to a string (!?):
error C2664: 'const boost::spirit::lex::detail::lexer_def_>::adder &boost::spirit::lex::detail::lexer_def_>::adder::operator ()(wchar_t,unsigned int) const' : cannot convert argument 1 from 'const boost::proto::exprns_::expr' to 'const std::basic_string,std::allocator> &'
Interestingly, the adder
in lexer.hpp has an operator ()
which takes an action as a third parameter – but it's commented out in my version of boost (1.55.0). Does this work in newer versions?
In the absence of this, how would I add token definitions with a semantic action and an ID to the lexer?
Looking at the header files it seems that there are at least two possible approaches:
You can use token_def
's id
member function in order to set the id after you have defined your token:
ellipses = "\\.\\.\\.";
...
ellipses.id(ID_ELLIPSES);
You can use token_def
's two parameters constructor when you define your token:
number = lex::token_def<>("[0-9]+", ID_NUMBER);
And then you can simply add your semantic actions as you did before:
this->self = ellipses[phx::ref(std::cout) << "Found ellipses.\n"] | '(' | ')' | number[phx::ref(std::cout) << "Found: " << phx::construct<std::string>(lex::_start, lex::_end) << '\n'];
The code below is based on Boost.Spirit.Lex example3.cpp with minor changes (marked with //CHANGED
) to achieve what you want.
Full Sample (Running on rextester)
#include <iostream>
#include <string>
#include <boost/config/warning_disable.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/spirit/include/phoenix.hpp>
using namespace boost::spirit;
namespace phx = boost::phoenix;
enum token_id //ADDED
{
ID_ELLIPSES = lex::min_token_id + 1,
ID_NUMBER
};
///////////////////////////////////////////////////////////////////////////////
// Token definition
///////////////////////////////////////////////////////////////////////////////
template <typename Lexer>
struct example3_tokens : lex::lexer<Lexer>
{
example3_tokens()
{
// define the tokens to match
ellipses = "\\.\\.\\.";
number = lex::token_def<>("[0-9]+", ID_NUMBER); //CHANGED
ellipses.id(ID_ELLIPSES); //CHANGED
// associate the tokens and the token set with the lexer
this->self = ellipses[phx::ref(std::cout) << "Found ellipses.\n"] | '(' | ')' | number[phx::ref(std::cout) << "Found: " << phx::construct<std::string>(lex::_start, lex::_end) << '\n']; //CHANGED
// define the whitespace to ignore (spaces, tabs, newlines and C-style
// comments)
this->self("WS")
= lex::token_def<>("[ \\t\\n]+") // whitespace
| "\\/\\*[^*]*\\*+([^/*][^*]*\\*+)*\\/" // C style comments
;
}
// these tokens expose the iterator_range of the matched input sequence
lex::token_def<> ellipses, identifier, number;
};
///////////////////////////////////////////////////////////////////////////////
// Grammar definition
///////////////////////////////////////////////////////////////////////////////
template <typename Iterator, typename Lexer>
struct example3_grammar
: qi::grammar<Iterator, qi::in_state_skipper<Lexer> >
{
template <typename TokenDef>
example3_grammar(TokenDef const& tok)
: example3_grammar::base_type(start)
{
start
= +(couplet | qi::token(ID_ELLIPSES)) //CHANGED
;
// A couplet matches nested left and right parenthesis.
// For example:
// (1) (1 2) (1 2 3) ...
// ((1)) ((1 2)(3 4)) (((1) (2 3) (1 2 (3) 4))) ...
// (((1))) ...
couplet
= qi::token(ID_NUMBER) //CHANGED
| '(' >> +couplet >> ')'
;
BOOST_SPIRIT_DEBUG_NODE(start);
BOOST_SPIRIT_DEBUG_NODE(couplet);
}
qi::rule<Iterator, qi::in_state_skipper<Lexer> > start, couplet;
};
///////////////////////////////////////////////////////////////////////////////
int main()
{
// iterator type used to expose the underlying input stream
typedef std::string::iterator base_iterator_type;
// This is the token type to return from the lexer iterator
typedef lex::lexertl::token<base_iterator_type> token_type;
// This is the lexer type to use to tokenize the input.
// Here we use the lexertl based lexer engine.
typedef lex::lexertl::actor_lexer<token_type> lexer_type; //CHANGED
// This is the token definition type (derived from the given lexer type).
typedef example3_tokens<lexer_type> example3_tokens;
// this is the iterator type exposed by the lexer
typedef example3_tokens::iterator_type iterator_type;
// this is the type of the grammar to parse
typedef example3_grammar<iterator_type, example3_tokens::lexer_def> example3_grammar;
// now we use the types defined above to create the lexer and grammar
// object instances needed to invoke the parsing process
example3_tokens tokens; // Our lexer
example3_grammar calc(tokens); // Our parser
std::string str ="(1) (1 2) (1 2 3) ... ((1)) ((1 2)(3 4)) (((1) (2 3) (1 2 (3) 4))) ... (((1))) ..."; //CHANGED
// At this point we generate the iterator pair used to expose the
// tokenized input stream.
std::string::iterator it = str.begin();
iterator_type iter = tokens.begin(it, str.end());
iterator_type end = tokens.end();
// Parsing is done based on the token stream, not the character
// stream read from the input.
// Note how we use the lexer defined above as the skip parser.
bool r = qi::phrase_parse(iter, end, calc, qi::in_state("WS")[tokens.self]);
if (r && iter == end)
{
std::cout << "-------------------------\n";
std::cout << "Parsing succeeded\n";
std::cout << "-------------------------\n";
}
else
{
std::cout << "-------------------------\n";
std::cout << "Parsing failed\n";
std::cout << "-------------------------\n";
}
std::cout << "Bye... :-) \n\n";
return 0;
}