Here is the original code:
K = zeros(N*N)
for a=1:N
for i=1:I
for j=1:J
M = kron(X(:,:,a).',Y(:,:,a,i,j));
%A function that essentially adds M to K.
end
end
end
The goal is to vectorize the kroniker multiplication calls. My intuition is to think of X and Y as containers of matrices (for reference, the slices of X and Y being fed to kron are square matrices of the order 7x7). Under this container scheme, X appears a 1-D container and Y as a 3-D container. My next guess was to reshape Y into a 2-D container or better yet a 1-D container and then do element wise multiplication of X and Y. Questions are: how would do this reshaping in a way that preserves the trace of M and can matlab even handle this idea in this container idea or do the containers need to be further reshaped to expose the inner matrix elements further?
Approach #1: Matrix multiplication with 6D
permute
% Get sizes
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
% Lose the third dim from X and Y with matrix-multiplication
parte1 = reshape(permute(Y,[1,2,4,5,3]),[],N)*reshape(X,[],N).';
% Rearrange the leftover dims to bring kron format
parte2 = reshape(parte1,[n1,n2,I,J,m1,m2]);
% Lose dims correspinding to last two dims coming in from Y corresponding
% to the iterative summation as suggested in the question
out = reshape(permute(sum(sum(parte2,3),4),[1,6,2,5,3,4]),m1*n1,m2*n2)
Approach #2: Simple 7D
permute
% Get sizes
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
% Perform kron format elementwise multiplication betwen the first two dims
% of X and Y, keeping the third dim aligned and "pushing out" leftover dims
% from Y to the back
mults = bsxfun(@times,permute(X,[4,2,5,1,3]),permute(Y,[1,6,2,7,3,4,5]));
% Lose the two dims with summation reduction for final output
out = sum(reshape(mults,m1*n1,m2*n2,[]),3);
Verification
Here's a setup for running the original and the proposed approaches -
% Setup inputs
X = rand(10,10,10);
Y = rand(10,10,10,10,10);
% Original approach
[n1,n2,N,I,J] = size(Y);
K = zeros(100);
for a=1:N
for i=1:I
for j=1:J
M = kron(X(:,:,a).',Y(:,:,a,i,j));
K = K + M;
end
end
end
% Approach #1
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
mults = bsxfun(@times,permute(X,[4,2,5,1,3]),permute(Y,[1,6,2,7,3,4,5]));
out1 = sum(reshape(mults,m1*n1,m2*n2,[]),3);
% Approach #2
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
parte1 = reshape(permute(Y,[1,2,4,5,3]),[],N)*reshape(X,[],N).';
parte2 = reshape(parte1,[n1,n2,I,J,m1,m2]);
out2 = reshape(permute(sum(sum(parte2,3),4),[1,6,2,5,3,4]),m1*n1,m2*n2);
After running, we see the max. absolute deviation with the proposed approaches against the original one -
>> error_app1 = max(abs(K(:)-out1(:)))
error_app1 =
1.1369e-12
>> error_app2 = max(abs(K(:)-out2(:)))
error_app2 =
1.1937e-12
Values look good to me!
Benchmarking
Timing these three approaches using the same big dataset as used for verification, we get something like this -
----------------------------- With Loop
Elapsed time is 1.541443 seconds.
----------------------------- With BSXFUN
Elapsed time is 1.283935 seconds.
----------------------------- With MATRIX-MULTIPLICATION
Elapsed time is 0.164312 seconds.
Seems like matrix-multiplication is doing fairly good for dataset of these sizes!