I've been asked to solve this differential equation:
(x,y,vx,vy)'=(vx,vy,vy,-vx)
which should return a circular motion with a 2*pi
period.
I implemented the function:
class FunzioneBase
{
public:
virtual VettoreLineare Eval(double t, const VettoreLineare& v) const = 0;
};
class Circonferenza: public FunzioneBase
{
private:
double _alpha;
public:
Circonferenza(double alpha) { _alpha = alpha; };
void SetAlpha(double alpha) { _alpha = alpha; };
virtual VettoreLineare Eval(double t, const VettoreLineare& v) const;
};
VettoreLineare Circonferenza::Eval(double t, const VettoreLineare& v) const
{
VettoreLineare y(4);
if (v.GetN() != 4)
{
std::cout << "errore" << std::endl;
return 0;
};
y.SetComponent(0, v.GetComponent(2));
y.SetComponent(1, v.GetComponent(3));
y.SetComponent(2, pow(pow(v.GetComponent(0), 2.) + pow(v.GetComponent(1), 2.), _alpha) * v.GetComponent(3));
y.SetComponent(3, - pow(pow(v.GetComponent(0), 2.) + pow(v.GetComponent(1), 2.), _alpha)) * v.GetComponent(2));
return y;
};
where _alpha
equals to 0
.
Now, this works just fine with Euler's method: if I integrate this ODE for 2 * pi * 10
, given the initial condition (1, 0, 0, -1)
, with a 0.003
precision, I get that the position is comparable to (1, 0)
within a range of 1 ± 0.1
, as we should expect. But if I integrate the same ODE with Runge Kutta's Method (with a 0.003
precision, for 2 * pi * 10
seconds) implemented as follows:
class EqDifferenzialeBase
{
public:
virtual VettoreLineare Passo (double t, VettoreLineare& x, double h, FunzioneBase* f) const = 0;
};
class Runge_Kutta: public EqDifferenzialeBase
{
public:
virtual VettoreLineare Passo(double t, VettoreLineare& v, double h, FunzioneBase* f) const;
};
VettoreLineare Runge_Kutta::Passo(double t, VettoreLineare& v, double h, FunzioneBase* _f) const
{
VettoreLineare k1 = _f->Eval(t, v);
VettoreLineare k2 = _f->Eval(t + h / 2., v + k1 *(h / 2.));
VettoreLineare k3 = _f->Eval(t + h / 2., v + k2 * (h / 2.));
VettoreLineare k4 = _f->Eval(t + h, v + k3 * h);
VettoreLineare y = v + (k1 + k2 * 2. + k3 * 2. + k4) * (h / 6.);
return y;
}
the program returns an x
position which equals to 0.39
aproximately, when the precision should theorically be, for a 4th order Runge Kutta's method, around 1E-6
. I checked and found that the period, with Runge_Kutta's, seems to almost quadruplicate (since in a 2 * pi
lapse, x
gets from 1
to 0.48
), but I don't understand why. This is the content of my main:
VettoreLineare DatiIniziali (4);
Circonferenza* myCirc = new Circonferenza(0);
DatiIniziali.SetComponent(0, 1.);
DatiIniziali.SetComponent(1, 0.);
DatiIniziali.SetComponent(2, 0.);
DatiIniziali.SetComponent(3, -1.);
double passo = 0.003;
Runge_Kutta myKutta;
for(int i = 0; i <= 2. * M_PI / passo; i++)
{
DatiIniziali = myKutta.Passo(0, DatiIniziali, passo, myCirc);
cout << DatiIniziali.GetComponent(0) << endl;
};
cout << 1 - DatiIniziali.GetComponent(0) << endl;
Thank you in advance.
Update: One error identified: Always compile with the -Wall
option to catch all warnings and automatic code corrections of the compiler. Then you would have found
fff: In member function ‘virtual VettoreLineare Circonferenza::Eval(double, const VettoreLineare&) const’:
fff:xxx:114: error: invalid operands of types ‘void’ and ‘double’ to binary ‘operator*’
y.SetComponent(3, - pow(pow(v.GetComponent(0), 2.) + pow(v.GetComponent(1), 2.), _alpha)) * v.GetComponent(2));
^
where you are closing too early after _alpha
so that the void
of SetComponent
gets to be a factor.
Update II: second error identified: In another post of yours the code of the linear vector class is given. There, in contrast to the addition (operator+
), the scalar-vector product (operator*(double)
) is modifying the calling instance. Thus in computing k2
the components of k1
get multiplied with h/2
. But then this modified k1
(and also modified k2
and k3
) are used in assembling the result y
resulting in some almost completely useless state update.
Original rapid prototyping: I can tell you that a stripped down bare-bones implementation in python works flawlessly
import numpy as np
def odeint(f,t0,y0,tf,h):
'''Classical RK4 with fixed step size, modify h to fit
the full interval'''
N = np.ceil( (tf-t0)/h )
h = (tf-t0)/N
t = t0
y = np.array(y0)
for k in range(int(N)):
k1 = h*np.array(f(t ,y ))
k2 = h*np.array(f(t+0.5*h,y+0.5*k1))
k3 = h*np.array(f(t+0.5*h,y+0.5*k2))
k4 = h*np.array(f(t+ h,y+ k3))
y = y + (k1+2*(k2+k3)+k4)/6
t = t + h
return t, y
def odefunc(t,y):
x,y,vx,vy = y
return [ vx,vx,vy,-vx ]
pi = 4*np.arctan(1);
print odeint(odefunc, 0, [1,0,0,-1], 2*pi, 0.003)
ends with
(t, [ x,y,vx,vy]) = (6.2831853071794184,
[ 1.00000000e+00, -6.76088739e-15, 4.23436503e-12,
-1.00000000e+00])
as expected. You will need a debugger or intermediate output to find where the computation goes wrong.