typedef int (D::*fptr)(void);
fptr bfunc;
bfunc=&D::Bfunc;
cout<<(reinterpret_cast<unsigned long long>(bfunc)&0xffffffff00000000)<<endl;
complete code available at : https://ideone.com/wRVyTu
I am trying to use reinterpret_cast
, but the compiler throws error
prog.cpp: In function 'int main()': prog.cpp:49:51: error: invalid cast from type 'fptr {aka int (D::*)()}' to type 'long long unsigned int' cout<<(reinterpret_cast<unsigned long long>(bfunc)&0xffffffff00000000)<<endl;
My questions are :
why is reinterpret_cast
not suitable for this occasion?
Is there another way, I can see the contents of the method pointer?
Using clang++ to compile a slightly modified version of your code (removed all the cout
to not get thousands of lines...), we get this for main
:
define i32 @main() #0 {
entry:
%retval = alloca i32, align 4
%bfunc = alloca { i64, i64 }, align 8
%dfunc = alloca { i64, i64 }, align 8
store i32 0, i32* %retval, align 4
store { i64, i64 } { i64 1, i64 16 }, { i64, i64 }* %bfunc, align 8
store { i64, i64 } { i64 9, i64 0 }, { i64, i64 }* %dfunc, align 8
ret i32 0
}
Note that the bfunc
and dfunc
are two 64-bit integer values. If I compile for 32-bit x86 it is two i32
(so 32-bit integer values).
So, if we make main
look like this:
int main() {
// your code goes here
typedef int (D::*fptr)(void);
fptr bfunc;
fptr dfunc;
bfunc=&D::Bfunc;
dfunc=&D::Dfunc;
D d;
(d.*bfunc)();
return 0;
}
the generated code looks like this:
; Function Attrs: norecurse uwtable
define i32 @main() #0 {
entry:
%retval = alloca i32, align 4
%bfunc = alloca { i64, i64 }, align 8
%dfunc = alloca { i64, i64 }, align 8
%d = alloca %class.D, align 8
store i32 0, i32* %retval, align 4
store { i64, i64 } { i64 1, i64 16 }, { i64, i64 }* %bfunc, align 8
store { i64, i64 } { i64 9, i64 0 }, { i64, i64 }* %dfunc, align 8
call void @_ZN1DC2Ev(%class.D* %d) #3
%0 = load { i64, i64 }, { i64, i64 }* %bfunc, align 8
%memptr.adj = extractvalue { i64, i64 } %0, 1
%1 = bitcast %class.D* %d to i8*
%2 = getelementptr inbounds i8, i8* %1, i64 %memptr.adj
%this.adjusted = bitcast i8* %2 to %class.D*
%memptr.ptr = extractvalue { i64, i64 } %0, 0
%3 = and i64 %memptr.ptr, 1
%memptr.isvirtual = icmp ne i64 %3, 0
br i1 %memptr.isvirtual, label %memptr.virtual, label %memptr.nonvirtual
memptr.virtual: ; preds = %entry
%4 = bitcast %class.D* %this.adjusted to i8**
%vtable = load i8*, i8** %4, align 8
%5 = sub i64 %memptr.ptr, 1
%6 = getelementptr i8, i8* %vtable, i64 %5
%7 = bitcast i8* %6 to i32 (%class.D*)**
%memptr.virtualfn = load i32 (%class.D*)*, i32 (%class.D*)** %7, align 8
br label %memptr.end
memptr.nonvirtual: ; preds = %entry
%memptr.nonvirtualfn = inttoptr i64 %memptr.ptr to i32 (%class.D*)*
br label %memptr.end
memptr.end: ; preds = %memptr.nonvirtual, %memptr.virtual
%8 = phi i32 (%class.D*)* [ %memptr.virtualfn, %memptr.virtual ], [ %memptr.nonvirtualfn, %memptr.nonvirtual ]
%call = call i32 %8(%class.D* %this.adjusted)
ret i32 0
}
This is not entirely trivial to follow, but in essense:
%memptr.adj = Read adjustment from bfunc[1]
%2 = %d[%memptr.adj]
cast %2 to D*
%memptr.ptr = bfunc[0]
if (%memptr.ptr & 1) goto is_virtual else goto is_non_virtual
is_virtual:
%memptr.virtual=vtable[%memptr.ptr-1]
goto common
is_non_virtual:
%memptr.non_virtual = %memptr.ptr
common:
if we came from
is_non_virtual: %8 = %memptr.non_virtual
is_virtual: %8 = %memptr.virutal
call %8
I skipped some type-casts and stuff to make it simpler.
NOTE This is NOT meant to say "this is how it is implemented always. It's one example of what the compiler MAY do. Different compilers will do this subtly differently. But if the function may or may not be virtual, the compiler first has to figure out which. [In the above example, I'm fairly sure we can turn on optimisation and get much better code, but it would presumably just figure out exactly what's going on and remove all of the code, which for understanding how it works is pointless]