I am doing some work in embedded C with an accelerometer that returns data as a 14 bit 2's complement number. I am storing this result directly into a uint16_t
. Later in my code I am trying to convert this "raw" form of the data into a signed integer to represent / work with in the rest of my code.
I am having trouble getting the compiler to understand what I am trying to do. In the following code I'm checking if the 14th bit is set (meaning the number is negative) and then I want to invert the bits and add 1 to get the magnitude of the number.
int16_t fxls8471qr1_convert_raw_accel_to_mag(uint16_t raw, enum fxls8471qr1_fs_range range) {
int16_t raw_signed;
if(raw & _14BIT_SIGN_MASK) {
// Convert 14 bit 2's complement to 16 bit 2's complement
raw |= (1 << 15) | (1 << 14); // 2's complement extension
raw_signed = -(~raw + 1);
}
else {
raw_signed = raw;
}
uint16_t divisor;
if(range == FXLS8471QR1_FS_RANGE_2G) {
divisor = FS_DIV_2G;
}
else if(range == FXLS8471QR1_FS_RANGE_4G) {
divisor = FS_DIV_4G;
}
else {
divisor = FS_DIV_8G;
}
return ((int32_t)raw_signed * RAW_SCALE_FACTOR) / divisor;
}
This code unfortunately doesn't work. The disassembly shows me that for some reason the compiler is optimizing out my statement raw_signed = -(~raw + 1);
How do I acheive the result I desire?
The math works out on paper, but I feel like for some reason the compiler is fighting with me :(.
Converting the 14 bit 2's complement value to 16 bit signed, while maintaining the value is simply a metter of:
int16_t accel = (int16_t)(raw << 2) / 4 ;
The left-shift pushes the sign bit into the 16 bit sign bit position, the divide by four restores the magnitude but maintains its sign. The divide avoids the implementation defined behaviour of an right-shift, but will normally result in a single arithmetic-shift-right on instruction sets that allow. The cast is necessary because raw << 2
is an int
expression, and unless int
is 16 bit, the divide will simply restore the original value.
It would be simpler however to just shift the accelerometer data left by two bits and treat it as if the sensor was 16 bit in the first place. Normalising everything to 16 bit has the benefit that the code needs no change if you use a sensor with any number of bits up-to 16. The magnitude will simply be four times greater, and the least significant two bits will be zero - no information is gained or lost, and the scaling is arbitrary in any case.
int16_t accel = raw << 2 ;
In both cases, if you want the unsigned magnitude then that is simply:
int32_t mag = (int32_t)labs( (int)accel ) ;