I'm trying to simulate something akin to Haskell's typeclasses with Common Lisp's CLOS. That is, I'd like to be able to dispatch a method on an object's "typeclasses" instead of its superclasses.
I have a metaclass defined for classes which have and implement typeclasses(which are just other classes). Those classes(those that implement typeclasses) have a slot containing the list of the typeclasses they implement.
I'd like to be able to define methods for a typeclass, and then be able to dispatch that method on objects whose class implement that typeclass. And I'd like to be able to add and remove typeclasses dynamically.
I figure I could probably do this by changing the method dispatch algorithm, though that doesn't seem too simple.
Anybody is comfortable enough with CLOS and the MOP to give me some suggestions?
Thanks.
Edit: My question might be specified as, how do I implement compute-applicable-methods-using-classes
and compute-applicable-methods
for a "custom" generic-function class such that if some of the specializers of a generic function method are typeclasses(classes whose metaclass is the 'typeclass' class), then the corresponding argument's class must implement the typeclass(which simply means having the typeclass stored in a slot of the argument's class) for the method to be applicable?
From what I understand from documentation, when a generic function is called, compute-discriminating-function
is first called, which will first attempt to obtain applicable methods through compute-applicable-methods-using-classes
, and if unsuccessful, will try the same with compute-applicable-methods
.
While my definition of compute-applicable-methods-using-classes
seems to work, the generic function fails to dispatch an applicable function. So the problem must be in compute-discriminating-function
or compute-effective-method
.
See code.
This is not easily achievable in Common Lisp.
In Common Lisp, operations (generic functions) are separate from types (classes), i.e. they're not "owned" by types. Their dispatch is done at runtime, with the possibility of adding, modifying and removing methods at runtime as well.
Usually, errors from missing methods are signaled only at runtime. The compiler has no way to know if a generic function is being "well" used or not.
The idiomatic way in Common Lisp is to use generic functions and describe its requirements, or in other words, the closest to an interface in Common Lisp is a set of generic functions and a marker mixin class. But most usually, only a protocol is specified, and its dependencies on other protocols. See, for instance, the CLIM specification.
As for type classes, it's a key feature that keeps the language not only fully type-safe, but also makes it very extensible in that aspect. Otherwise, either the type system would be too strict, or the lack of expressiveness would lead to type-unsafe situations, at least from the compiler's point of view. Note that Haskell doesn't keep, or doesn't have to keep, object types at runtime, it takes every type inference at compile-time, much in contrast with idiomatic Common Lisp.
To have something similar to type classes in Common Lisp at runtime, you have a few choices
Should you choose to support type classes with its rules, I suggest you use the meta-object protocol:
Define a new generic function meta-class (i.e. one which inherits from standard-generic-function
)
Specialize compute-applicable-methods-using-classes
to return false as a second value, because classes in Common Lisp are represented solely by their name, they're not "parameterizable" or "constrainable"
Specialize compute-applicable-methods
to inspect the argument's meta-classes for types or rules, dispatch accordingly and possibly memoize results
Should you choose to only have parameterizable types (e.g. templates, generics), an existing option is the Lisp Interface Library, where you pass around an object that implements a particular strategy using a protocol. However, I see this mostly as an implementation of the strategy pattern, or an explicit inversion of control, rather than actual parameterizable types.
For actual parameterizable types, you could define abstract unparameterized classes from which you'd intern concrete instances with funny names, e.g. lib1:collection<lib2:object>
, where collection
is the abstract class defined in the lib1
package, and the lib2:object
is actually part of the name as is for a concrete class.
The benefit of this last approach is that you could use these classes and names anywhere in CLOS.
The main disadvantage is that you must still generate concrete classes, so you'd probably have your own defmethod
-like macro that would expand into code that uses a find-class
-like function which knows how to do this. Thus breaking a significant part of the benefit I just mentioned, or otherwise you should follow the discipline of defining every concrete class in your own library before using them as specializers.
Another disadvantage is that without further non-trivial plumbing, this is too static, not really generic, as it doesn't take into account that e.g. lib1:collection<lib2:subobject>
could be a subclass of lib1:collection<lib2:object>
or vice-versa. Generically, it doesn't take into account what is known in computer science as covariance and contravariance.
But you could implement it: lib:collection<in out>
could represent the abstract class with one contravariant argument and one covariant argument. The hard part would be generating and maintaining the relationships between concrete classes, if at all possible.
In general, a compile-time approach would be more appropriate at the Lisp implementation level. Such Lisp would most probably not be a Common Lisp. One thing you could do is to have a Lisp-like syntax for Haskell. The full meta-circle of it would be to make it totally type-safe at the macro-expansion level, e.g. generating compile-time type errors for macros themselves instead of only for the code they generate.
EDIT: After your question's edit, I must say that compute-applicable-methods-using-classes
must return nil
as a second value whenever there is a type class specializer in a method. You can call-next-method
otherwise.
This is different than there being a type class specializer in an applicable method. Remember that CLOS doesn't know anything about type classes, so by returning something from c-a-m-u-c
with a true second value, you're saying it's OK to memoize (cache) given the class alone.
You must really specialize compute-applicable-methods
for proper type class dispatching. If there is opportunity for memoization (caching), you must do so yourself here.