I am creating a Multiplayer game using socket io in javascript. The game works perfectly at the moment aside from the client interpolation. Right now, when I get a packet from the server, I simply set the clients position to the position sent by the server. Here is what I have tried to do:
getServerInfo(packet) {
var otherPlayer = players[packet.id]; // GET PLAYER
otherPlayer.setTarget(packet.x, packet.y); // SET TARGET TO MOVE TO
...
}
So I set the players Target position. And then in the Players Update method I simply did this:
var update = function(delta) {
if (x != target.x || y != target.y){
var direction = Math.atan2((target.y - y), (target.x - x));
x += (delta* speed) * Math.cos(direction);
y += (delta* speed) * Math.sin(direction);
var dist = Math.sqrt((x - target.x) * (x - target.x) + (y - target.y)
* (y - target.y));
if (dist < treshhold){
x = target.x;
y = target.y;
}
}
}
This basically moves the player in the direction of the target at a fixed speed. The issue is that the player arrives at the target either before or after the next information arrives from the server.
Edit: I have just read Gabriel Bambettas Article on this subject, and he mentions this:
Say you receive position data at t = 1000. You already had received data at t = 900, so you know where the player was at t = 900 and t = 1000. So, from t = 1000 and t = 1100, you show what the other player did from t = 900 to t = 1000. This way you’re always showing the user actual movement data, except you’re showing it 100 ms “late”.
This again assumed that it is exactly 100ms late. If your ping varies a lot, this will not work.
Would you be able to provide some pseudo code so I can get an Idea of how to do this?
I have found this question online here. But none of the answers provide an example of how to do it, only suggestions.
I'm completely fresh to multiplayer game client/server architecture and algorithms, however in reading this question the first thing that came to mind was implementing second-order (or higher) Kalman filters on the relevant variables for each player.
Specifically, the Kalman prediction steps which are much better than simple dead-reckoning. Also the fact that Kalman prediction and update steps work somewhat as weighted or optimal interpolators. And futhermore, the dynamics of players could be encoded directly rather than playing around with abstracted parameterizations used in other methods.
Meanwhile, a quick search led me to this:
The abstract:
Online 3D games require efficient and fast user interaction support over network, and the networking support is usually implemented using network game engine. The network game engine should minimize the network delay and mitigate the network traffic congestion. To minimize the network traffic between game users, a client-based prediction (dead reckoning algorithm) is used. Each game entity uses the algorithm to estimates its own movement (also other entities' movement), and when the estimation error is over threshold, the entity sends the UPDATE (including position, velocity, etc) packet to other entities. As the estimation accuracy is increased, each entity can minimize the transmission of the UPDATE packet. To improve the prediction accuracy of dead reckoning algorithm, we propose the Kalman filter based dead reckoning approach. To show real demonstration, we use a popular network game (BZFlag), and improve the game optimized dead reckoning algorithm using Kalman filter. We improve the prediction accuracy and reduce the network traffic by 12 percents.
Might seem wordy and like a whole new problem to learn what it's all about... and discrete state-space for that matter.
Briefly, I'd say a Kalman filter is a filter that takes into account uncertainty, which is what you've got here. It normally works on measurement uncertainty at a known sample rate, but it could be re-tooled to work with uncertainty in measurement period/phase.
The idea being that in lieu of a proper measurement, you'd simply update with the kalman predictions. The tactic is similar to target tracking applications.
I was recommended them on stackexchange myself - took about a week to figure out how they were relevant but I've since implemented them successfully in vision processing work.
(...it's making me want to experiment with your problem now !)
As I wanted more direct control over the filter, I copied someone else's roll-your-own implementation of a Kalman filter in matlab into openCV (in C++):
void Marker::kalmanPredict(){
//Prediction for state vector
Xx = A * Xx;
Xy = A * Xy;
//and covariance
Px = A * Px * A.t() + Q;
Py = A * Py * A.t() + Q;
}
void Marker::kalmanUpdate(Point2d& measuredPosition){
//Kalman gain K:
Mat tempINVx = Mat(2, 2, CV_64F);
Mat tempINVy = Mat(2, 2, CV_64F);
tempINVx = C*Px*C.t() + R;
tempINVy = C*Py*C.t() + R;
Kx = Px*C.t() * tempINVx.inv(DECOMP_CHOLESKY);
Ky = Py*C.t() * tempINVy.inv(DECOMP_CHOLESKY);
//Estimate of velocity
//units are pixels.s^-1
Point2d measuredVelocity = Point2d(measuredPosition.x - Xx.at<double>(0), measuredPosition.y - Xy.at<double>(0));
Mat zx = (Mat_<double>(2,1) << measuredPosition.x, measuredVelocity.x);
Mat zy = (Mat_<double>(2,1) << measuredPosition.y, measuredVelocity.y);
//kalman correction based on position measurement and velocity estimate:
Xx = Xx + Kx*(zx - C*Xx);
Xy = Xy + Ky*(zy - C*Xy);
//and covariance again
Px = Px - Kx*C*Px;
Py = Py - Ky*C*Py;
}
I don't expect you to be able to use this directly though, but if anyone comes across it and understand what 'A', 'P', 'Q' and 'C' are in state-space (hint hint, state-space understanding is a pre-req here) they'll likely see how connect the dots.
(both matlab and openCV have their own Kalman filter implementations included by the way...)