I'm reading up on Direct2D before I migrate my GDI code to it, and I'm trying to figure out how paths work. I understand most of the work involved with geometries and geometry sinks, but there's one thing I don't understand: the D2D1_FIGURE_BEGIN
type and its parameter to BeginFigure()
.
First, why is this value even needed? Why does a geometry need to know if it's filled or hollow ahead of time? I don't know nay other drawing API which cares about whether path objects are filled or not ahead of time; you just define the endpoints of the shapes and then call fill()
or stroke()
to draw your path, so how are geometries any different?
And if this parameter is necessary, how does choosing one value over the other affect the shapes I draw in?
Finally, if I understand the usage of this enumeration correctly, you're supposed to only use filled paths with FillGeometry()
and hollow paths with DrawGeometry()
. However, the hourglass example here and cited by several method documentation pages (like the BeginFigure()
one) creates a filled figure and draws it with both DrawGeometry()
and FillGeometry()
! Is this undefined behavior? Does it have anything to do with the blue border around the gradient in the example picture, which I don't see anywhere in the code?
Thanks.
EDIT Okay I think I understand what's going on with the gradient's weird outline: the gradient is also transitioning alpha values, and the fill is overlapping the stroke because the stroke is centered on the line, and the fill is drawn after the stroke. That still doesn't explain why I can fill and stroke with a filled geometry, or what the difference between hollow and filled geometries are...
Also I just realized that hollow geometries are documented as not having bounds. Does this mean that hollow geometries are purely an optimization for stroke-only geometries and otherwise behave identically to a filled geometry?
If you want to better understand Direct2D's geometry system, I recommend studying the WPF geometry system. WPF, XPS, Direct2D, Silverlight, and the newer "XAML" frameworks all use the same building blocks (the same "language", if you will). I found it easier to understand the declarative object-oriented API in WPF, and after that it was a breeze to work with the imperative API in Direct2D. You can think of WPF's mutable geometry system as an implementation of the "builder" pattern from Java, where the build() method is behind the scenes (hidden from you) and spits out an immutable Direct2D geometry when it comes time to render things on-screen (WPF uses something called "MIL", which IIRC/AFAICT, Direct2D was forked from. They really are the same thing!) It is also straightforward to write code that converts between the two representations, e.g. walking a WPF PathGeometry and streaming it into a Direct2D geometry sink, and you can also use ID2D1PathGeometry::Stream
and a custom ID2D1GeometrySink
implementation to reconstitute a WPF PathGeometry.
(BTW this is not theoretical :) It's exactly what I do in Paint.NET 4.0+: I use a WPF-esque declarative, mutable object model that spits out immutable Direct2D geometries at render time. It works really well!)
Okay, anyway, to get directly to your specific question: BeginFigure()
and D2D1_FIGURE_BEGIN
map directly to the PathFigure.IsFilled
property in WPF. In order to get an intuitive understanding of what effect this has, you can use something like KaXAML to play around with some geometries from WPF or Silverlight samples and see what the results look like. And the documentation is definitely better for WPF and Silverlight than for Direct2D.
Another key concept is that DrawGeometry
is basically a helper method. You can accomplish the same thing by first widening your geometry with ID2D1Geometry::Widen
and then using FillGeometry
("widening" seems like a misnomer to me, btw: in Photoshop or Illustrator you'd probably use a verb like "stroke"). That's not to say that either one always performs better/worse ... be sure to benchmark. I've seen it go both ways. The reason you can think of this as a helper method is dependent on the fact that the lowest level of the rasterization engine can only do one thing: fill a triangle. All other drawing "primitives" must be converted to triangle lists or strips (this is also why ID2D1Mesh
is so fast: it bypasses all sorts of processing code!). Filling a geometry requires tessellation of its interior to a list of triangle strips which can then be filled by Direct3D. "Drawing" a geometry requires applying a stroke (width and/or style): even a simple 1-pixel wide straight line must be first converted to 2 filled triangles.
Oh, also, if you want to compute the "real" bounds of a geometry with hollow figures, use ID2D1Geometry::GetWidenedBounds
with a strokeWidth of zero. This is a discrepancy between Direct2D and WPF that puzzles me. Geometry.Bounds
(in WPF) is equivalent to ID2D1Geometry::GetWidenedBounds(0.0f)
.