Search code examples
javaapache-sparkrecommendation-engineapache-spark-mllib

AbstractMethodError in sample Mlib program


I'm trying to build a sample recommender from the Apache spark sample mlib recommender http://spark.apache.org/docs/1.2.1/mllib-collaborative-filtering.html#examples in Java am getting but when i build it ( in IDEA intellij) the output logs show

Exception in thread "main" java.lang.AbstractMethodError

at org.apache.spark.Logging$class.log(Logging.scala:52)

at org.apache.spark.mllib.recommendation.ALS.log(ALS.scala:94)

at org.apache.spark.Logging$class.logInfo(Logging.scala:59)
at org.apache.spark.mllib.recommendation.ALS.logInfo(ALS.scala:94)  
at org.apache.spark.mllib.recommendation.ALS$$anonfun$run$1.apply$mcVI$sp(ALS.scala:232)
    at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:141)
    at org.apache.spark.mllib.recommendation.ALS.run(ALS.scala:230)
    at org.apache.spark.mllib.recommendation.ALS$.train(ALS.scala:599)
    at org.apache.spark.mllib.recommendation.ALS$.train(ALS.scala:616)
    at org.apache.spark.mllib.recommendation.ALS.train(ALS.scala)
    at Sample.SimpleApp.main(SimpleApp.java:36)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at com.intellij.rt.execution.application.AppMain.main(AppMain.java:134)

Beginner to spark , so can tell me what the error exactly is ?

Here is the source ( exaclty similar to the mlib docs one , except name of the input file)

package Sample;

import scala.Tuple2;

import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
import org.apache.spark.SparkConf;


public class SimpleApp {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("Collaborative Filtering Example").setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        // Load and parse the data
        String path = "/home/deeepak/somefile.txt";
        JavaRDD<String> data = sc.textFile(path);
        JavaRDD<Rating> ratings = data.map(
                new Function<String, Rating>() {
                    public Rating call(String s) {
                        String[] sarray = s.split(",");
                        return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]),
                                Double.parseDouble(sarray[2]));
                    }
                }
        );



        // Build the recommendation model using ALS
        int rank = 10;
        int numIterations = 20;
        MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), 10, 20, 0.01);

        // Evaluate the model on rating data
        JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
                new Function<Rating, Tuple2<Object, Object>>() {
                    public Tuple2<Object, Object> call(Rating r) {
                        return new Tuple2<Object, Object>(r.user(), r.product());
                    }
                }
        );
        JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
                model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
                        new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
                            public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
                                return new Tuple2<Tuple2<Integer, Integer>, Double>(
                                        new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
                            }
                        }
                ));
        JavaRDD<Tuple2<Double, Double>> ratesAndPreds =
                JavaPairRDD.fromJavaRDD(ratings.map(
                        new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
                            public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
                                return new Tuple2<Tuple2<Integer, Integer>, Double>(
                                        new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
                            }
                        }
                )).join(predictions).values();
        double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
                new Function<Tuple2<Double, Double>, Object>() {
                    public Object call(Tuple2<Double, Double> pair) {
                        Double err = pair._1() - pair._2();
                        return err * err;
                    }
                }
        ).rdd()).mean();
        System.out.println("Mean Squared Error = " + MSE);

    }
}

The error seems to be on line 36 . Java version used 1.8.40 and getting the spark dependencies using maven


Solution

  • Solved this issue a java.lang.AbstractMethodError occurs only when we are trying to call an abstract method and this ofcourse can be caught at compile time .

    The only time it will occur at runtime is when the class during typing the method in the IDE is different from the one during runtime .

    So it was a very wierd case of corruption of jar files . Cleared m2 home and mvn clean install'd again and it ran fine . Phew !