I have a dataset as follows
Id Date1
121 2011-01-03
121 2011-01-03
121 2011-04-02
121 2011-08-14
121 2012-01-14
121 2012-05-12
975 2011-02-01
975 2011-02-01
975 2011-06-14
975 2012-01-06
975 2012-04-19
975 2012-09-25
What I want to create is an output like this below, where the new Date2 column is offset by one value based on the id,
Id Date1 Date2
121 2011-01-03 2011-01-03
121 2011-01-03 2011-04-02
121 2011-04-02 2011-08-14
121 2011-08-14 2012-01-14
121 2012-01-14 2012-05-12
121 2012-05-12 NA
975 2011-02-01 2011-02-01
975 2011-02-01 2011-06-14
975 2011-06-14 2012-01-06
975 2012-01-06 2012-04-19
975 2012-04-19 2012-09-25
975 2012-09-25 NA
Date2 column row 2 for Id 121 i.e 2011-01-03 becomes Date1 column, row1 value for Id 121.
Date2 column row3 for Id 121 i.e 2011-04-02 becomes Date1 column, row2 value for Id 121....so on...This should happen by id.
Any help is appreciated.
Using dplyr
, we can group by 'Id' and create a new column 'Date2' using mutate
and lead
library(dplyr)
df1 %>%
group_by(Id) %>%
mutate(Date2= lead(Date1))
# Id Date1 Date2
#1 121 2011-01-03 2011-01-03
#2 121 2011-01-03 2011-04-02
#3 121 2011-04-02 2011-08-14
#4 121 2011-08-14 2012-01-14
#5 121 2012-01-14 2012-05-12
#6 121 2012-05-12 NA
#7 975 2011-02-01 2011-02-01
#8 975 2011-02-01 2011-06-14
#9 975 2011-06-14 2012-01-06
#10 975 2012-01-06 2012-04-19
#11 975 2012-04-19 2012-09-25
#12 975 2012-09-25 NA
Or a similar option using the devel version of data.table
will be converting the 'data.frame' to 'data.table' (setDT(df1)
), group by 'Id', and use the shift
function with option type='lead'
library(data.table)#v1.9.5+
setDT(df1)[, Date2:= shift(Date1, type='lead') , by = Id][]
# Id Date1 Date2
# 1: 121 2011-01-03 2011-01-03
# 2: 121 2011-01-03 2011-04-02
# 3: 121 2011-04-02 2011-08-14
# 4: 121 2011-08-14 2012-01-14
# 5: 121 2012-01-14 2012-05-12
# 6: 121 2012-05-12 NA
# 7: 975 2011-02-01 2011-02-01
# 8: 975 2011-02-01 2011-06-14
# 9: 975 2011-06-14 2012-01-06
#10: 975 2012-01-06 2012-04-19
#11: 975 2012-04-19 2012-09-25
#12: 975 2012-09-25 NA
Or we can use ave
from base R
. We group by 'Id' column, remove the first observation and concatenate with NA
at the end.
df1$Date2 <- with(df1, ave(Date1, Id, FUN=function(x) c(x[-1], NA)))