I want to use facets (because I like the way they look for this) to show polynomial fits of increasing degree. It's easy enough to plot them separately as follows:
df <- data.frame(x=rep(1:10,each=10),y=rnorm(100))
ggplot(df,aes(x=x,y=y)) + stat_smooth(method="lm",formula=y~poly(x,2))
ggplot(df,aes(x=x,y=y)) + stat_smooth(method="lm",formula=y~poly(x,3))
ggplot(df,aes(x=x,y=y)) + stat_smooth(method="lm",formula=y~poly(x,4))
I know I can always combine them in some fashion using grobs, but I would like to combine them using facet_grid
if possible. Maybe something similar to:
poly2 <- df
poly2$degree <- 2
poly3 <- df
poly3$degree <- 3
poly4 <- df
poly4$degree <- 4
polyn <- rbind(poly2,poly3,poly4)
ggplot(polyn,aes(x=x,y=y)) + stat_smooth(method="lm",formula=y~poly(x,degree)) +
facet_grid(degree~.)
This doesn't work, of course, because the faceting does not work on y~poly(x,degree)
so that degree
gets pulled from the data. Is there some way to make this work?
You can always predict the points manually and then facet quite easily,
## Data
set.seed(0)
df <- data.frame(x=rep(1:10,each=10),y=rnorm(100))
## Get poly fits
dat <- do.call(rbind, lapply(1:4, function(d)
data.frame(x=(x=runif(1000,0,10)),
y=predict(lm(y ~ poly(x, d), data=df), newdata=data.frame(x=x)),
degree=d)))
ggplot(dat, aes(x, y)) +
geom_point(data=df, aes(x, y), alpha=0.3) +
geom_line(color="steelblue", lwd=1.1) +
facet_grid(~ degree)
To add confidence bands, you can use the option interval='confidence'
with predict
. You might also be interested in the function ggplot2::fortify
to get more fit statistics.
dat <- do.call(rbind, lapply(1:4, function(d) {
x <- seq(0, 10, len=100)
preds <- predict(lm(y ~ poly(x, d), data=df), newdata=data.frame(x=x), interval="confidence")
data.frame(cbind(preds, x=x, degree=d))
}))
ggplot(dat, aes(x, fit)) +
geom_point(data=df, aes(x, y), alpha=0.3) +
geom_line(color="steelblue", lwd=1.1) +
geom_ribbon(aes(x=x, ymin=lwr, ymax=upr), alpha=0.3) +
facet_grid(~ degree)