I'm working on a pretty cool project where I'm collecting data about the movement of a cursor, but I've run into an issue where I think I could use some help. I am constantly reading in data about the x and y position of the cursor (along with other relevant data), and once the cursor exceeds a certain threshold in the y-dimension, I need to calculate the movement direction (angle). Let me illustrate with a figure I drew:
What tends to happen is that the cursor moves in a somewhat straight line, but then curves towards the end of the movement. I need to calculate theta, i.e., the angle of the blue vector with respect to the positive x-axis. The idea I came up with is to use the last 2 samples to largely determine what the movement direction is, otherwise if I use too many samples I would skew what the actual angle is. To give an extreme case let me follow up with another picture:
Here each dot represents a sample. Note that if I use BOTH dots, the real angle I want will be wrong (again, I need to find the direction the cursor was moving in last, which is the vector drawn at the end of the line). I dont expect this case to come up much, but was wondering if there would be a way to solve for it if it does.
Lastly, note that the these motions can occur in either the first or second quadrant, if that makes a difference.
I'd really appreciate any help here. I'm coding this in C++ but I think I could translate any answer. Thanks.
This should get you started http://jsfiddle.net/0ao9oa7a/
Code
function process(points) {
if(points.length === 0) {
txt = "Not enough points\n" + txt;
return null;
}
// compress points, removing those that are too close together
var newPoints = [];
newPoints.push(points[0]);
for(var i = 1; i < points.length; i++) {
if(Math.sqrt(Math.pow(points[i].x - newPoints[newPoints.length - 1].x, 2) + Math.pow(points[i].y - newPoints[newPoints.length - 1].y, 2)) > 5) {
newPoints.push(points[i]);
}
}
points = newPoints;
if(points.length < 2) {
txt = "Not enough points\n" + txt;
return null;
}
// get all of the angles
var angles = [];
for(var i=0; i < points.length - 1; i++) {
var rad = Math.atan2(points[i + 1].y - points[i].y, points[i + 1].x - points[i].x);
angles[i] = rad;
txt += "x: " + (points[i].x|0) + " y: " + (points[i].y|0) + " x: " + (points[i+1].x|0) + " y: " + (points[i+1].y|0) + " [" + ((rad * 180 / Math.PI)|0) + "]" + "\n";
}
txt += "\n";
// get all of the diffs between angles
// save the index of the max diff
var absDiffs = [];
var maxDiff = -1;
var maxDiffAngleIndex = -1;
for(var i=0; i < points.length - 1; i++) {
var delta = Math.abs(angles[i] - angles[i + 1]);
if(delta >= maxDiff) {
maxDiff = delta;
maxDiffAngleIndex = i + 1;
}
}
if(maxDiffAngleIndex == -1) {
txt = "Angle: " + angles[0] + " : " + (angles[0] * 180 / Math.PI) + "\n" + txt;
return angles[0];
} else if(maxDiffAngleIndex == angles.length - 1) {
txt = "Angle: " + angles[angle.length - 1] + " : " + (angles[angles.length - 1] * 180 / Math.PI) + "\n" + txt;
return angles[angles.length - 1];
} else {
// find the average angle from the index to the end
var sumX = 0;
var sumY = 0;
for(var i = maxDiffAngleIndex; i < angles.length; i++) {
sumX += Math.cos(angles[i]);
sumY += Math.sin(angles[i]);
}
var avgX = sumX / (angles.length - maxDiffAngleIndex);
var avgY = sumY / (angles.length - maxDiffAngleIndex);
//
var avgAngle = Math.atan2(avgY, avgX);
txt = "Angle: " + avgAngle + " : " + (avgAngle * 180 / Math.PI) + "\n" + txt;
return avgAngle;
}
}