Search code examples
c++lapackeigenvalue

Why does this LAPACK program work correctly when I provide the matrix directly, but not when I read it from a file?


Below comes a LAPACK code for diagonalising a matrix A, which I provide in the form of an array a. It is but a slight modification of an official example and appears to produce correct results. It is impractical, because I have to provide the array a directly.

#include <stdlib.h>
#include <stdio.h>
#include <fstream>
#include <vector>


/* DSYEV prototype */
extern "C"{
void dsyev( char* jobz, char* uplo, int* n, double* a, int* lda,
                double* w, double* work, int* lwork, int* info );
}
/* Auxiliary routines prototypes */
extern "C"{ 
void print_matrix( char* desc, int m, int n, double* a, int lda );
}
/* Parameters */
#define N 5
#define LDA N

/* Main program */
int main() {
        /* Locals */
        int n = N, lda = LDA, info, lwork;
        double wkopt;
        double* work;
        /* Local arrays */
        double w[N];
        double a[LDA*N] = {
            1.96,  0.00,  0.00,  0.00,  0.00,
           -6.49,  3.80,  0.00,  0.00,  0.00,
           -0.47, -6.39,  4.17,  0.00,  0.00,
           -7.20,  1.50, -1.51,  5.70,  0.00,
           -0.65, -6.34,  2.67,  1.80, -7.10
        };
        /* Executable statements */
        printf( " DSYEV Example Program Results\n" );
        /* Query and allocate the optimal workspace */
        lwork = -1;
        dsyev( "Vectors", "Upper", &n, a, &lda, w, &wkopt, &lwork, &info );
        lwork = (int)wkopt;
        work = (double*)malloc( lwork*sizeof(double) );
        /* Solve eigenproblem */
        dsyev( "Vectors", "Upper", &n, a, &lda, w, work, &lwork, &info );
        /* Check for convergence */
        if( info > 0 ) {
                printf( "The algorithm failed to compute eigenvalues.\n" );
                exit( 1 );
        }
        /* Print eigenvalues */
        print_matrix( "Eigenvalues", 1, n, w, 1 );
        /* Print eigenvectors */
        print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
        /* Free workspace */
        free( (void*)work );
        exit( 0 );
} /* End of DSYEV Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, int m, int n, double* a, int lda ) {
        int i, j;
        printf( "\n %s\n", desc );
        for( i = 0; i < m; i++ ) {
                for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
                printf( "\n" );
        }
}

I merely want to modify the above code, so that I can read the array from a file instead of providing it directly. To that end I wrote the function read_covariance that reads the array from a file peano_covariance.data. The contents of the latter data file are:

1.96 0.00 0.00 0.00  0.00
-6.49 3.80 0.00 0.00 0.00
-0.47 -6.39 4.17 0.00 0.00
-7.20 1.50 -1.51 5.70 0.00
-0.65 -6.34 2.67 1.80 -7.10

Below is my attempt, which produces very incorrect eigenvalues and eigenvectors.

#include <stdlib.h>
#include <stdio.h>
#include <fstream>
#include <vector>


int read_covariance (std::vector<double> data)
  {
    double tmp;

    std::ifstream fin("peano_covariance.data");

    while(fin >> tmp)
    {
        data.push_back(tmp);
    }

    return 0;
}

/* DSYEV prototype */
extern "C"{
void dsyev( char* jobz, char* uplo, int* n, double* a, int* lda,
                double* w, double* work, int* lwork, int* info );
}
/* Auxiliary routines prototypes */
extern "C"{ 
void print_matrix( char* desc, int m, int n, double* a, int lda );
}
/* Parameters */
#define N 5
#define LDA N

/* Main program */
int main() {
        /* Locals */
        std::vector<double> data;
        int n = N, lda = LDA, info, lwork;
        double wkopt;
        double* work;
        /* Local arrays */
        double w[N];
        double a[LDA*N];
        read_covariance(data);

        std::copy(data.begin(), data.end(), a);
        /* Executable statements */
        printf( " DSYEV Example Program Results\n" );
        /* Query and allocate the optimal workspace */
        lwork = -1;
        dsyev( "Vectors", "Upper", &n, a, &lda, w, &wkopt, &lwork, &info );
        lwork = (int)wkopt;
        work = (double*)malloc( lwork*sizeof(double) );
        /* Solve eigenproblem */
        dsyev( "Vectors", "Upper", &n, a, &lda, w, work, &lwork, &info );
        /* Check for convergence */
        if( info > 0 ) {
                printf( "The algorithm failed to compute eigenvalues.\n" );
                exit( 1 );
        }
        /* Print eigenvalues */
        print_matrix( "Eigenvalues", 1, n, w, 1 );
        /* Print eigenvectors */
        print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
        /* Free workspace */
        free( (void*)work );
        exit( 0 );
} /* End of DSYEV Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, int m, int n, double* a, int lda ) {
        int i, j;
        printf( "\n %s\n", desc );
        for( i = 0; i < m; i++ ) {
                for( j = 0; j < n; j++ ) printf( " %e", a[i+j*lda] );
                printf( "\n" );
        }
}

Solution

  • Replace

    int read_covariance (std::vector<double> data)
    

    with

    int read_covariance (std::vector<double> & data)
    

    You are sending in a copy of the array rather than a reference to it. It is the temporary copy that is being filled with values. This is what bg2b is referring to in his comment.

    Personally, though, I would rather write something like

    int read_covariance (const std::string & fname)
    {
        std::ifstream in(fname.c_str());
        double val;
        std::vector<double> cov;
        while(in >> val) cov.push_back(val);
        return cov;
    }
    

    Even better would be to use a proper multidimensional array library rather than unwieldy 1d vectors. There's a plethora of such libraries available, and I'm not sure which is the best one (the lack of a good multidimensional array class in the C++ standard library is one of the main reasons why I often use fortran instead), but ndarray looks interesting - it aims to mimic the features of the excellent numpy array module for python.