I have to deconstruct the following JSON into a list of case classes:
{
"data": [
[49, true, 14, null, null],
[52, false, null, null, null],
[72, true, 4, 2, 1]
]
}
case class:
case class Data(i1: Int, b: Bool, i2: Option[Int], i3: Option[Int], i4: Option[Int])
I started with a for comprehension, but was not able to finish it:
for {
JArray(data) <- json \ "data"
JArray(d) <- data
JInt(line) <- d.head // ???
} yield Data()
Any help is much appreciated.
Thanks,
Michael
You can write a CustomSerializer
for Data
.
I introduced a JOptionInt
extractor to turn a JInt
or a JNull
into a Option[Int]
, it is possible it can be done in json4s directly.
import org.json4s._
import org.json4s.jackson.JsonMethods._
import org.json4s.JsonDSL._
case class Data(i1: Int, b: Boolean, i2: Option[Int], i3: Option[Int], i4: Option[Int])
object DataSerializer extends CustomSerializer[Data]( format => (
{
case JArray(List(JInt(i1), JBool(b), JOptionInt(i2), JOptionInt(i3), JOptionInt(i4))) =>
Data(i1.toInt, b, i2, i3 , i4)
}, {
case d: Data => JArray(List(d.i1, d.b, d.i2, d.i3, d.i4))
}
))
object JOptionInt {
def unapply(x: JValue) : Option[Option[Int]] = x match {
case JInt(i) => Option(Option(i.toInt))
case JNull => Option(None)
case _ => None
}
}
Which can be used as:
implicit val formats = DataSerializer
val json = parse("""
{
"data": [
[49, true, 14, null, null],
[52, false, null, null, null],
[72, true, 4, 2, 1]
]
}
""")
val result = (json \ "data").extract[Array[Data]]
// Array(Data(49,true,Some(14),None,None), Data(52,false,None,None,None), Data(72,true,Some(4),Some(2),Some(1)))