I'm trying to create a smooth brush in HTML5, an example is below.
This is what I tried, it's something. But it's not as smooth as the image above.
Editor.Drawing.Context.globalAlpha = 0.3;
var amount = 3;
for(var t = -amount; t <= amount; t += 3) {
for(var n = -amount; n <= amount; n += 3) {
Editor.Drawing.Context.drawImage(Editor.Drawing.ClipCanvas, -(n-1), -(t-1));
}
}
And it looks like this.
Choose a brush, this can be an image with predefined brushes or you can make one using an off-screen canvas and draw a radial gradient into it. For simplicity I made a simple image brush such as these:
Then for each new point drawn to the canvas:
The step value can be anything that looks good as a result - it largely depends on the smoothness of the brush as well as its general size (smoother brushes will require smaller steps to blend into each other).
For this demo I used brush-width, the smaller values that are used, the more brushes will be drawn along the line, nicer result, but can also slow down the program, so find a value that compromises quality and speed.
For example:
This will be called every time a new point is registered when drawing:
function brushLine(ctx, x1, y1, x2, y2) {
var diffX = Math.abs(x2 - x1), // calc diffs
diffY = Math.abs(y2 - y1),
dist = Math.sqrt(diffX * diffX + diffY * diffY), // find length
step = 20 / (dist ? dist : 1), // "resolution"
i = 0, // iterator for length
t = 0, // t [0, 1]
b, x, y;
while (i <= dist) {
t = Math.max(0, Math.min(1, i / dist));
x = x1 + (x2 - x1) * t;
y = y1 + (y2 - y1) * t;
b = (Math.random() * 3) | 0;
ctx.drawImage(brush, x - bw * 0.5, y - bh * 0.5); // draw brush
i += step;
}
}
var brush = new Image();
brush.onload = ready;
brush.src = "//i.sstatic.net/HsbVA.png";
function ready() {
var c = document.querySelector("canvas"),
ctx = c.getContext("2d"),
isDown = false, px, py,
bw = this.width, bh = this.height;
c.onmousedown = c.ontouchstart = function(e) {
isDown = true;
var pos = getPos(e);
px = pos.x;
py = pos.y;
};
window.onmousemove = window.ontouchmove = function(e) {
if (isDown) draw(e);
};
window.onmouseup = window.ontouchend = function(e) {
e.preventDefault();
isDown = false
};
function getPos(e) {
e.preventDefault();
if (e.touches) e = e.touches[0];
var r = c.getBoundingClientRect();
return {
x: e.clientX - r.left,
y: e.clientY - r.top
}
}
function draw(e) {
var pos = getPos(e);
brushLine(ctx, px, py, pos.x, pos.y);
px = pos.x;
py = pos.y;
}
function brushLine(ctx, x1, y1, x2, y2) {
var diffX = Math.abs(x2 - x1),
diffY = Math.abs(y2 - y1),
dist = Math.sqrt(diffX * diffX + diffY * diffY),
step = bw / (dist ? dist : 1),
i = 0,
t = 0,
b, x, y;
while (i <= dist) {
t = Math.max(0, Math.min(1, i / dist));
x = x1 + (x2 - x1) * t;
y = y1 + (y2 - y1) * t;
b = (Math.random() * 3) | 0;
ctx.drawImage(brush, x - bw * 0.5, y - bh * 0.5);
i += step
}
}
}
body {background: #777}
canvas {background: #fff;cursor:crosshair}
<canvas width=630 height=500></canvas>
You can use this technique to simulate a variety of brushes.
Tip: with a small modification you can also variate the width depending on velocity to increase realism (not shown).