SparseMatrix<int,RowMajor> sm(3,3),sm1;
sm.insert(0,0)=1;
sm.insert(1,1)=1;
sm.insert(2,2)=1;
sm.insert(1,2)=1;
sm.insert(2,1)=1;
SparseMatrix<int,RowMajor> I(3,3);
I.insert(0,0)=1;
I.insert(1,1)=1;
I.insert(2,2)=1;
cout<<"SM matrix \n"<<sm<<endl;
sm1=sm-I;
cout<<"SM1 Matrix"<<sm1<<endl;
cout<<"the number of nonzeros\n"<<sm1.nonZeros()<<endl;
Output
SM matrix
Nonzero entries:
(1,0) (_,_) (1,1) (1,2) (1,1) (1,2)
Outer pointers:
0 2 4 $
Inner non zeros:
1 2 2 $
1 0 0
0 1 1
0 1 1
SM1 MatrixNonzero entries:
(0,0) (0,1) (1,2) (1,1) (0,2)
Outer pointers:
0 1 3 $
0 0 0
0 0 1 `
0 1 0
the number of nonzeros
5
sm1.nonZeros()
does not look at the values of the matrix, rather it returns the size of the inner array that was allocated to store values:
/** \returns the number of non zero coefficients */
inline Index nonZeros() const
{
if(m_innerNonZeros)
return innerNonZeros().sum();
return static_cast<Index>(m_data.size());
}
If you were to look at that array in a debugger or by accessing it via sm1.valuePtr()
you would see something like this:
sm1.m_data.m_values == {0, 0, 1, 1, 0}
If it were a dense matrix, you could do something like (m1.array() != 0).count()
, but that doesn't work with the sparse module. A workaround would be to use a map as follows:
cout<<"the number of nonzeros with comparison: \n"
<< (Eigen::Map<Eigen::VectorXi> (sm1.valuePtr(), sm1.nonZeros()).array() != 0).count()
<< endl;
which actually compares each value to 0
and outputs the correct answer.
If you're sure that you won't be adding modifying the newly zeroed values, you can prune the sparse matrix:
sm1.prune(1);
cout<<"the number of pruned nonzeros\n"<<sm1.nonZeros()<<endl;
This first removes the values below the threshold (1 in this case) and the data array looks like:
sm1.m_data.m_values == {1, 1}