I have a csv Document with 2 columns which contains Commodity Category and Commodity Name.
Ex:
Sl.No. Commodity Category Commodity Name
1 Stationary Pencil
2 Stationary Pen
3 Stationary Marker
4 Office Utensils Chair
5 Office Utensils Drawer
6 Hardware Monitor
7 Hardware CPU
and I have another csv file which contains various Commodity names.
Ex:
Sl.No. Commodity Name
1 Pancil
2 Pencil-HB 02
3 Pencil-Apsara
4 Pancil-Nataraj
5 Pen-Parker
6 Pen-Reynolds
7 Monitor-X001RL
The output I would like is to standardise and categorise the commodity names and classify them into respective Commodity Categories like shown below :
Sl.No. Commodity Name Commodity Category
1 Pencil Stationary
2 Pencil Stationary
3 Pencil Stationary
4 Pancil Stationary
5 Pen Stationary
6 Pen Stationary
7 Monitor Hardware
Step 1) I first have to use NLTK (Text mining methods) and clean the data so as to seperate "Pencil" from "Pencil-HB 02" .
Step 2) After cleaning I have to use Approximate String match technique i.e agrep() to match the patterns "Pencil *" or correcting "Pancil" to "Pencil".
Step 3)Once correcting the pattern I have to categorise. No idea how.
This is what I have thought about. I started with step 2 and I'm stuck in step 2 only. I'm not finding an exact method to code this. Is there any way to get the output as required? If yes please suggest me the method I can proceed with.
You could use the stringdist
package. The correct
function below will correct the Commodity.Name
in file2 based on distances of the item to different CName
.
Then a left_join
is used to join the two tables.
I also notice that there are some classifications if I use the default options for stringdistmatrix
. You can try changing the weight
argument of stringdistmatrix
for better correction result.
> library(dplyr)
> library(stringdist)
>
> file1 <- read.csv("/Users/Randy/Desktop/file1.csv")
> file2 <- read.csv("/Users/Randy/Desktop/file2.csv")
>
> head(file1)
Sl.No. Commodity.Category Commodity.Name
1 1 Stationary Pencil
2 2 Stationary Pen
3 3 Stationary Marker
4 4 Office Utensils Chair
5 5 Office Utensils Drawer
6 6 Hardware Monitor
> head(file2)
Sl.No. Commodity.Name
1 1 Pancil
2 2 Pencil-HB 02
3 3 Pencil-Apsara
4 4 Pancil-Nataraj
5 5 Pen-Parker
6 6 Pen-Reynolds
>
> CName <- levels(file1$Commodity.Name)
> correct <- function(x){
+ factor(sapply(x, function(z) CName[which.min(stringdistmatrix(z, CName, weight=c(1,0.1,1,1)))]), CName)
+ }
>
> correctedfile2 <- file2 %>%
+ transmute(Commodity.Name.Old = Commodity.Name, Commodity.Name = correct(Commodity.Name))
>
> correctedfile2 %>%
+ inner_join(file1[,-1], by="Commodity.Name")
Commodity.Name.Old Commodity.Name Commodity.Category
1 Pancil Pencil Stationary
2 Pencil-HB 02 Pencil Stationary
3 Pencil-Apsara Pencil Stationary
4 Pancil-Nataraj Pencil Stationary
5 Pen-Parker Pen Stationary
6 Pen-Reynolds Pen Stationary
7 Monitor-X001RL Monitor Hardware
If you need the "Others" category, you just need to play with the weights.
I added a row "Diesel" in file2. Then compute the score using stringdist
with customized weights (you should try varying the values). If the score is large than 2 (this value is related to how the weights are assigned), it doesn't correct anything.
PS: as we don't know all the possible labels, we have to do as.character
to convect factor
to character
.
PS2: I am also using tolower
for case insensitive scoring.
> head(file2)
Sl.No. Commodity.Name
1 1 Diesel
2 2 Pancil
3 3 Pencil-HB 02
4 4 Pencil-Apsara
5 5 Pancil-Nataraj
6 6 Pen-Parker
>
> CName <- levels(file1$Commodity.Name)
> CName.lower <- tolower(CName)
> correct_1 <- function(x){
+ scores = stringdistmatrix(tolower(x), CName.lower, weight=c(1,0.001,1,0.5))
+ if (min(scores)>2) {
+ return(x)
+ } else {
+ return(as.character(CName[which.min(scores)]))
+ }
+ }
> correct <- function(x) {
+ sapply(as.character(x), correct_1)
+ }
>
> correctedfile2 <- file2 %>%
+ transmute(Commodity.Name.Old = Commodity.Name, Commodity.Name = correct(Commodity.Name))
>
> file1$Commodity.Name = as.character(file1$Commodity.Name)
> correctedfile2 %>%
+ left_join(file1[,-1], by="Commodity.Name")
Commodity.Name.Old Commodity.Name Commodity.Category
1 Diesel Diesel <NA>
2 Pancil Pencil Stationary
3 Pencil-HB 02 Pencil Stationary
4 Pencil-Apsara Pencil Stationary
5 Pancil-Nataraj Pencil Stationary
6 Pen-Parker Pen Stationary
7 Pen-Reynolds Pen Stationary
8 Monitor-X001RL Monitor Hardware