Problem:
I have an object in 3D space that exists at a given orientation. I need to reorient the object to a new orientation. I'm currently representing the orientations as quaternions, though this is not strictly necessary.
I essentially need to determine the angular velocity needed to orient the body into the desired orientation.
What I'm currently working with looks something like the following:
Psuedocode:
// 4x4 Matrix containing rotation and translation
Matrix4 currentTransform = GetTransform();
// Grab the 3x3 matrix containing orientation only
Matrix3 currentOrientMtx = currentTransform.Get3x3();
// Build a quat based on the rotation matrix
Quaternion currentOrientation(currentOrientMtx);
currentOrientation.Normalize();
// Build a new matrix describing our desired orientation
Vector3f zAxis = desiredForward;
Vector3f yAxis = desiredUp;
Vector3f xAxis = yAxis.Cross(zAxis);
Matrix3 desiredOrientMtx(xAxis, yAxis, zAxis);
// Build a quat from our desired roation matrix
Quaternion desiredOrientation(desiredOrientMtx);
desiredOrientation.Normalize();
// Slerp from our current orientation to the new orientation based on our turn rate and time delta
Quaternion slerpedQuat = currentOrientation.Slerp(desiredOrientation, turnRate * deltaTime);
// Determine the axis and angle of rotation
Vector3f rotationAxis = slerpedQuat.GetAxis();
float rotationAngle = slerpedQuat.GetAngle();
// Determine angular displacement and angular velocity
Vector3f angularDisplacement = rotationAxis * rotationAngle;
Vector3f angularVelocity = angularDisplacement / deltaTime;
SetAngularVelocity(angularVelocity);
This essentially just sends my object spinning to oblivion. I have verified that the desiredOrientMtx I constructed via the axes is indeed the correct final rotation transformation. I feel like I'm missing something silly here.
Thoughts?
To calculate angular velocity, your turnRate
already provides the magnitude (rads/sec), so all you really need is the axis of rotation. That is just given by GetAxis( B * Inverse(A) )
. GetAngle
of that same quantity would give the total angle to travel between the two. See 'Difference' between two quaternions for further explanation.
SetAngularVelocity( Normalize( GetAxis( B * Inverse(A)) ) * turnRate )
You need to set the angular velocity to 0 at some point (when you reach your goal orientation). One way to do this is by using a quaternion distance. Another simpler way is by checking against the amount of time taken. Finally, you can check the angle between two quats (as discussed above) and check if that is close to 0.
float totalAngle = GetAngle( Normalize( endingPose * Inverse( startingPose ) ) );
if( fabs( totalAngle ) > 0.0001 ) // some epsilon
{
// your setting angular velocity code here
SetAngularVelocity(angularVelocity);
}
else
{
SetAngularVelocity( Vector3f(0) );
// Maybe, if you want high accuracy, call SetTransform here too
}
But, really, I don't see why you don't just use the Slerp
to its fullest. Instead of relying on the physics integrator (which can be imprecise) and relying on knowing when you've reached your destination (which is somewhat awkward), you could just move the object frame-by-frame since you know the motion.
Quaternion startingPose;
Quaternion endingPose;
// As discussed earlier...
Quaternion totalAngle = Quaternion.AngleBetween( startingPose, endingPose );
// t is set to 0 whenever you start a new motion
t += deltaT;
float howFarIn = (turnRate * t) / totalAngle;
SetCurrentTransform( startingPose.Slerp( endingPose, howFarIn ) );
See Smooth rotation with quaternions for some discussion on that.