I'm trying to quantize a set of double type samples with 128 level uniform quantizer and I want my output to be double type aswell. When I try to use "quantize" matlab gives an error: Inputs of class 'double' are not supported. I tried "uencode" as well but its answer was nonsense. I'm quite new to matlab and I've been working on this for hours. Any help appriciated. Thanks
uencode is supposed to give integer results. Thats the point of it. but the key point is that it assumes a symmetric range. going from -x to +x where x is the largest or smallest value in your data set. So if your data is from 0-10 your result looks like nonsense because it quantizes the values on the range -10 to 10.
In any event, you actually want the encoded value and the quantized value. I wrote a simple function to do this. It even has little help instructions (really just type "help ValueQuantizer"). I also made it very flexible so it should work with any data size (assuming you have enough memory) it can be a vector, 2d array, 3d, 4d....etc
here is an example to see how it works. Our number is a Uniform distribution from -0.5 to 3.5 this shows that unlike uencode, my function works with nonsymmetric data, and that it works with negative values
a = 4*rand(2,4,2) - .5
[encoded_vals, quant_values] = ValueQuantizer(a, 3)
produces
a(:,:,1) =
0.6041 2.1204 -0.0240 3.3390
2.2188 0.1504 1.4935 0.8615
a(:,:,2) =
1.8411 2.5051 1.5238 3.0636
0.3952 0.5204 2.2963 3.3372
encoded_vals(:,:,1) =
1 4 0 7
5 0 3 2
encoded_vals(:,:,2) =
4 5 3 6
1 1 5 7
quant_values(:,:,1) =
0.4564 1.8977 -0.0240 3.3390
2.3781 -0.0240 1.4173 0.9368
quant_values(:,:,2) =
1.8977 2.3781 1.4173 2.8585
0.4564 0.4564 2.3781 3.3390
so you can see it returns the encoded values as integers (just like uencode but without the weird symmetric assumption). Unlike uencode, this just returns everything as doubles rather than converting to uint8/16/32. The important part is it also returns the quantized values, which is what you wanted
here is the function
function [encoded_vals, quant_values] = ValueQuantizer(U, N)
% ValueQuantizer uniformly quantizes and encodes the input into N-bits
% it then returns the unsigned integer encoded values and the actual
% quantized values
%
% encoded_vals = ValueQuantizer(U,N) uniformly quantizes and encodes data
% in U. The output range is integer values in the range [0 2^N-1]
%
% [encoded_vals, quant_values] = ValueQuantizer(U, N) uniformly quantizes
% and encodes data in U. encoded_vals range is integer values [0 2^N-1]
% quant_values shows the original data U converted to the quantized level
% representing the number
if (N<2)
disp('N is out of range. N must be > 2')
return;
end
quant_values = double(U(:));
max_val = max(quant_values);
min_val = min(quant_values);
%quantizes the data
quanta_size = (max_val-min_val) / (2^N -1);
quant_values = (quant_values-min_val) ./ quanta_size;
%reshapes the data
quant_values = reshape(quant_values, size(U));
encoded_vals = round(quant_values);
%returns the original numbers in their new quantized form
quant_values = (encoded_vals .* quanta_size) + min_val;
end
As far as I can tell this should always work, but I haven't done extensive testing, good luck