My assignment is to implement a Loopy Belief Propagation algorithm for Low-density Parity-check Code. This code uses a parity-check matrix H which is rather sparse (say 750-by-1000 binary matrix with an average of about 3 "ones" per each column). The code to generate the parity-check matrix is taken from here
Anyway, one of the subtasks is to check the reliability of LDPC code when the density of the matrix H increases. So, I fix the channel at 0.5 capacity, fix my code speed at 0.35 and begin to increase the density of the matrix. As the average number of "ones" in a column goes from 3 to 7 in steps of 1, disaster happens. With 3 or 4 the code copes perfectly well. With higher density it begins to fail: not only does it sometimes fail to converge, it oftentimes converges to the wrong codeword and produces mistakes.
So my question is: what type of behaviour is expected of an LDPC code as its sparse parity-check matrix becomes denser? Bonus question for skilled mind-readers: in my case (as the code performance degrades) is it more likely because the Loopy Belief Propagation algo has no guarantee on convergence or because I made a mistake implementing it?
After talking to my TA and other students I understand the following: