Search code examples
c++iteratortype-traitsvalue-typeinserter

Traits class to extract container's value_type from a back_insert_iterator


The std::back_insert_iterator has value_type equal to void, but it also has a protected member container that holds a pointer to the underlying Container. I am trying to write a traits class to extract the container's value_type, along these lines:

#include <iterator>
#include <type_traits>
#include <vector>

template<class OutputIt>
struct outit_vt
:
    OutputIt
{
    using self_type = outit_vt<OutputIt>;
    using value_type = typename std::remove_pointer_t<decltype(std::declval<self_type>().container)>::value_type;
};

int main()
{
    std::vector<int> v;
    auto it = std::back_inserter(v);
    static_assert(std::is_same<outit_vt<decltype(it)>::value_type, int>::value, "");
}

Live Example

However, this (more or less expectedly) runs into incomplete type errors. Is there anyway around this in order to get extract the container's value_type?


Solution

  • The answer by @Rapptz is correct but for generic code (i.e. when it is not clear a priori whether one deals with a raw T* or a back_insert_iterator or one of the Standard Library's other output iterators), a more systematic approach is necessary.

    To that effect, below a definition of a class template output_iterator_traits in a user-defined namespace xstd.

    #include <iterator>             // iterator, iterator_traits, input_iterator_tag, output_iterator_tag, random_access_iterator_tag
                                    // back_insert_iterator, front_insert_iterator, insert_iterator, ostream_iterator, ostreambuf_iterator
    #include <memory>               // raw_storage_iterator
    
    namespace xstd {
    
    template<class T>
    struct output_iterator_traits
    :
            std::iterator_traits<T>
    {};
    
    template< class OutputIt, class T>
    struct output_iterator_traits<std::raw_storage_iterator<OutputIt, T>>
    :
            std::iterator<std::output_iterator_tag, T>
    {};
    
    template<class Container>
    struct output_iterator_traits<std::back_insert_iterator<Container>>
    :
            std::iterator<std::output_iterator_tag, typename Container::value_type>
    {};
    
    template<class Container>
    struct output_iterator_traits<std::front_insert_iterator<Container>>
    :
            std::iterator<std::output_iterator_tag, typename Container::value_type>
    {};
    
    template<class Container>
    struct output_iterator_traits<std::insert_iterator<Container>>
    :
            std::iterator<std::output_iterator_tag, typename Container::value_type>
    {};
    
    template <class T, class charT, class traits>
    struct output_iterator_traits<std::ostream_iterator<T, charT, traits>>
    :
            std::iterator<std::output_iterator_tag, T>
    {};
    
    template <class charT, class traits>
    struct output_iterator_traits<std::ostreambuf_iterator<charT, traits>>
    :
            std::iterator<std::output_iterator_tag, charT>
    {};
    
    } // namespace xstd
    

    The unspecialized version simply inherits from std::iterator_traits<T>, but for the 6 output iterators defined in the <iterator> and <memory> headers, the specializations inherit from std::iterator<std::output_iterator_tag, V> where V is the type appearing as an argument of the iterator's operator=(const V&).

    For the insert iterators, this corresponds to typename Container::value_type, for raw storage iterators to T, and for ostream and ostreambuf iterators to T and charT, respectively.

    A generic algorithm of the form

    template<class InputIt, class OutputIt>
    auto my_fancy_algorithm(InputIt first, InputIt last, OutputIt dest)
    {
         using T = typename xstd::output_iterator_traits<OutputIt>::value_type;
         for (; first != last; ++first) {
             // ... construct arguments from *first
             *dest++ = T{ /* arguments */ };
         }
    }
    

    will then transparantly work with both raw pointers and the Standard Library's output iterators.