I am trying to do a numerical integration on a function which is absolutely horrible to expand and work with analytically. The integral is over dpsi and dtheta. If I store the variables as sym i am told the integral input must be a double or single, if i store it as a double or single i am told I am adding two tensors of different dimensions. Help?
eta = input('Enter Dielectric Constant 1.5-4: ');
psi = input('Enter Lattitude -pi/2 to +pi/2: ');
theta = input('Enter Longitude -pi/2 to +pi/2: ');
sdev = input('Enter STD DEV (roughness) maybe 0.1: ');
dpsi = sym('dspi');
dtheta = sym('dtheta');
calpha = (cos(theta+dtheta)).*(cos(psi+dpsi));
rp01 = calpha-sqrt(eta-1+((calpha).^2));
rp02 = calpha+sqrt(eta-1+((calpha).^2));
rperp = (rp01./rp02).^2;
rp11 = ((eta.*calpha)-sqrt(eta-1+((calpha).^2)));
rp12 = ((eta.*calpha)+sqrt(eta-1+((calpha).^2)));
rpar = (rp11./rp12).^2;
fun = @(dtheta,dpsi) (rpar+rperp)
thetamax = (pi/2) - theta
psimax = (pi/2) - psi
q = integral2(fun,-pi/2,thetamax,-pi/2,psimax)
Convert the symbolic expression to an actual numerical function using:
fun = matlabFunction((rpar+rperp),'vars',{dtheta,dpsi});
Avoid the symbolic stuff in the first place and just define a function:
function out = YOURFANCYFUNCTION(eta,psi,theta,sdev,dtheta,dpsi)
calpha = (cos(theta+dtheta)).*(cos(psi+dpsi));
rp01 = calpha-sqrt(eta-1+((calpha).^2));
rp02 = calpha+sqrt(eta-1+((calpha).^2));
rperp = (rp01./rp02).^2;
rp11 = ((eta.*calpha)-sqrt(eta-1+((calpha).^2)));
rp12 = ((eta.*calpha)+sqrt(eta-1+((calpha).^2)));
rpar = (rp11./rp12).^2;
out = (rpar+rperp);
The function you pass to integral should then be:
fun = @(dtheta,dpsi) YOURFANCYFUNCTION(eta,psi,theta,sdev,dtheta,dpsi)
Which captures the current values of eta,psi,theta,sdev
and makes dtheta
and dpsi
variables.
By the way: The variable sdev
is never used.