I'm trying to code a texture reprojection using a UV gBuffer (this is a texture that contains the UV desired value for mapping at that pixel)
I think that this should be easy to understand just by seeing this picture (I cannot attach due low reputation): http://www.andvfx.com/wp-content/uploads/2012/12/3-objectes.jpg
The first image (the black/yellow/red/green one) is the UV gBuffer, it represents the uv values, the second one is the diffuse channel and the third the desired result.
Making this on OpenGL is pretty trivial.
Draw a simple rectangle and use as fragmented shader this pseudo-code:
float2 newUV=texture(UVgbufferTex,gl_TexCoord[0]).xy; float3 finalcolor=texture(DIFFgbufferTex,newUV);
return float4(finalcolor,0);
OpenGL takes care about selecting the mipmap level, the anisotropic filtering etc, meanwhile if I make this on regular CPU process I get a single pixel for finalcolor so my result is crispy.
Any advice here? I was wondering about computing manually a kind of mipmaps and select the level by checking the contiguous pixel but not sure if this is the right way, also I doubt how to deal with that since it could be changing fast on horizontal but slower on vertical or viceversa.
In fact I don't know how this is computed internally on OpenGL/DirectX since I used this kind of code for a long time but never thought about the internals.
You are on the right track.
To select mipmap level or apply anisotropic filtering you need a gradient. That gradient comes naturally in GL (in fragment shaders) because it is computed for all interpolated variables after rasterization. This all becomes quite obvious if you ever try to sample a texture using mipmap filtering in a vertex shader.
ρ = max (((du/dx)2 + (dv/dx)2)1/2 , ((du/dy)2 + (dv/dy)2)1/2)
λ = log2 ρ