Thanks in advance for your help.
In the real world, I am using one button to open two mechanical valves, but one of those valves should close after a period of time that we will hard code into the sketch, and the other valve stays open for as long as the button is pushed. For proof of concept, I am lighting two LEDs as stand-ins for the valves.
If Button One is pressed, Valve One should Open, and Valve Two should also Open for 200ms then Close.
Within the main loop, I look for the button to be pushed as part of an if statement. When that condition is passed, I used a while loop and timer to keep "valve2" open until the time is up. LEDs work, and all is superficially great. However...
When my partner starts putting the actual mechanicals together, valve2 doesn't open because the while loop is cycling so quickly that the voltage required to initiate the opening of the valve is not high enough.
const int button1 = 2; //Pin for switch 1
const int button2 = 3; //Pin for switch 2
const int valve1 = 12; //Pin for relay 1
const int valve2 = 13; //Pin for relay 2
// variables will change:
int state1 = 0; // variable for reading the pushbutton status
int state2 = 0; // variable for reading the pushbutton status
//THIS IS THE TIME IN MILLISECONDS FOR valve2 WHEN button1 IS DEPRESSED
int valve2time = 200;
void setup() {
//switches
pinMode(button1,INPUT); //Set button1 as input
pinMode(button2, INPUT); //Set button2 as input
//relays
pinMode(valve1, OUTPUT); //Set valve1 as output
pinMode(valve2, OUTPUT); //Set valve2 as output
Serial.begin(9600);
}
void loop(){
state1 = digitalRead(button1); //state1 returns the state of button1, up or down.
state2 = digitalRead(button2); //state2 returns the state of button2, up or down.
int duration = switchTime(); //Create variable to capture duration of switch press
if (state1 == LOW && state2 == LOW){ //if no buttons are pressed
digitalWrite(valve1,LOW); //make sure valve1 is off
digitalWrite(valve2,LOW); //make sure valve2 is off
}
else if (state1 == HIGH && state2 == LOW) { //if JUST button one is pressed
digitalWrite(valve1,HIGH); //turn on valve1
while (duration <= valve2time){ //as long as the timer is below or = to what we defined up top....
digitalWrite(valve2,HIGH); //...Turn on valve2...
break; //...Then stop the while loop...
}
digitalWrite(valve2,LOW); //...and finally turn off valve2
}
else if (state2 == HIGH){ //final condition, if button two is pressed
digitalWrite(valve1,HIGH); //turn on valve1
digitalWrite(valve2,HIGH); //turn on valve2
}
}
//return the time in ms that the switch has been pressed (LOW)
long switchTime(){
//these variables are static
static unsigned long startTime = 0; //the time the switch state was first detected
static boolean state; //the current state of the switch
if(digitalRead(button1) != state){ //check to see if the switch has changed state
state = ! state; //yes, invert the state
startTime = millis(); //store the time
}
if(state == HIGH){
return millis() - startTime; //switch pushed, return time in ms
}
else{
return 0; //return 0 if the switch is not pushed (in the HIGH state)
}
}
//button pins
const int BUTTON1_PIN = 2;
const int BUTTON2_PIN = 3;
const int VALVE1_PIN = 0; //mml for tiny
const int VALVE2_PIN = 1; //mml for tiny
// IO Channels - Used to simulate arduino IO
boolean inputChannels[] = {LOW, LOW}; // digital input channels "Button1" and "Button2"
boolean outputChannels[] = {LOW, LOW}; // digital output channels "Valve1" and "Valve2"
// =============================================================================================================
// You can probably ignore everything above this line
// State machine variables
const int STATE_CLOSED = 0;
const int STATE_BUTTON1_PRESSED = 1;
const int STATE_BUTTON1_RELEASED = 2;
const int STATE_BUTTON2_PRESSED = 3;
const int STATE_BUTTON2_RELEASED = 4;
int currentState = 0;
int lastState = 0;
// button debounce time in ms
unsigned long BUTTON_DEBOUNCE = 200;
unsigned long BUTTON1_PRESSED_VALVE2_FLASH = 350;
unsigned long BUTTON1_RELEASE_VALVE2_FLASH = 1000;
// state tracking arrays
boolean buttonState[] = {LOW, LOW};
boolean buttonDebounce[] = {LOW, LOW};
unsigned long buttonTimers[] = {0, 0};
unsigned long valveTimers[] = {0, 0};
void setup(){
pinMode(BUTTON1_PIN, INPUT);
digitalWrite(BUTTON1_PIN, HIGH); //MML
pinMode(BUTTON2_PIN, INPUT);
digitalWrite(BUTTON2_PIN, HIGH); //MML
pinMode(VALVE1_PIN, OUTPUT);
pinMode(VALVE2_PIN, OUTPUT);
}
/**
* Main control loop
*/
void loop() {
switch (currentState) {
case STATE_CLOSED:
handleClosedState();
lastState = STATE_CLOSED;
break;
case STATE_BUTTON1_PRESSED:
handleButton1PressedState();
lastState = STATE_BUTTON1_PRESSED;
break;
case STATE_BUTTON1_RELEASED:
handleButton1ReleasedState();
lastState = STATE_BUTTON1_RELEASED;
break;
case STATE_BUTTON2_PRESSED:
handleButton2PressedState();
lastState = STATE_BUTTON2_PRESSED;
break;
case STATE_BUTTON2_RELEASED:
handleButton2ReleasedState();
lastState = STATE_BUTTON2_RELEASED;
break;
default:;
}
}
/**
* Handler method for STATE_CLOSED
*/
void handleClosedState() {
// ensure valves are closed
if (digitalRead(VALVE1_PIN) == HIGH) {
digitalWrite(VALVE1_PIN, LOW);
}
if (digitalRead(VALVE1_PIN) == HIGH) {
digitalWrite(VALVE2_PIN, LOW);
}
// wait for button1 press
if (LOW == debouncedDigitalRead(BUTTON1_PIN, BUTTON_DEBOUNCE)) {
buttonState[BUTTON1_PIN] = LOW;
currentState = STATE_BUTTON1_PRESSED;
}
}
/**
* Handler method for STATE_BUTTON1_PRESSED
*/
void handleButton1PressedState() {
// check for button1 release
if (HIGH == debouncedDigitalRead(BUTTON1_PIN, BUTTON_DEBOUNCE)) {
currentState = STATE_BUTTON1_RELEASED;
return;
}
// open valve1
if (digitalRead(VALVE1_PIN) == LOW) {
valveTimers[VALVE1_PIN] = millis();
digitalWrite(VALVE1_PIN, HIGH);
}
// on state change open valve2
if (lastState != currentState) {
valveTimers[VALVE2_PIN] = millis();
digitalWrite(VALVE2_PIN, HIGH);
}
// and close it after 200 ms
else if ((millis() - valveTimers[VALVE2_PIN]) > BUTTON1_PRESSED_VALVE2_FLASH && digitalRead(VALVE2_PIN) == HIGH) {
digitalWrite(VALVE2_PIN, LOW);
}
// check for button2 press
if (LOW == debouncedDigitalRead(BUTTON2_PIN, BUTTON_DEBOUNCE)) {
currentState = STATE_BUTTON2_PRESSED;
}
}
/**
* Handler method for STATE_BUTTON1_RELEASED
*/
void handleButton1ReleasedState() {
// open valve2
if (lastState != currentState) {
valveTimers[VALVE2_PIN] = millis();
digitalWrite(VALVE2_PIN, HIGH);
digitalWrite(VALVE1_PIN, LOW);
}
// and close valve2 after 1000ms
else if ((millis() - valveTimers[VALVE2_PIN] > BUTTON1_RELEASE_VALVE2_FLASH)) {
digitalWrite(VALVE2_PIN, LOW);
currentState = STATE_CLOSED;
}
}
/**
* Handler method for STATE_BUTTON2_PRESSED
*/
void handleButton2PressedState() {
// open valve2
if (digitalRead(VALVE2_PIN) == LOW){
digitalWrite(VALVE2_PIN, HIGH);
digitalWrite(VALVE1_PIN, HIGH);
}
// check for button1 release
if (HIGH == debouncedDigitalRead(BUTTON1_PIN, BUTTON_DEBOUNCE)) {
currentState = STATE_BUTTON1_RELEASED;
}
// check for button2 release
else if (HIGH == debouncedDigitalRead(BUTTON2_PIN, BUTTON_DEBOUNCE)) {
currentState = STATE_BUTTON2_RELEASED;
}
}
/**
* Handler method for STATE_BUTTON2_PRESSED
*/
void handleButton2ReleasedState() {
// open valve2
if (digitalRead(VALVE2_PIN) == HIGH){
digitalWrite(VALVE2_PIN, LOW);
digitalWrite(VALVE1_PIN, HIGH);
}
// check for button1 release
if (HIGH == debouncedDigitalRead(BUTTON1_PIN, BUTTON_DEBOUNCE)) {
currentState = STATE_BUTTON1_RELEASED;
}
// check for button2 press
else if (LOW == debouncedDigitalRead(BUTTON2_PIN, BUTTON_DEBOUNCE)) {
currentState = STATE_BUTTON2_PRESSED;
}
}
/**
* Utility for debouncing input channels
* @param channel
* @param debounce
* @return
*/
boolean debouncedDigitalRead(int channel, unsigned long debounce) {
int input = digitalRead(channel);
if (input != buttonState[channel] && HIGH == buttonDebounce[channel]) {
buttonTimers[channel] = millis();
buttonDebounce[channel] = LOW;
}
if ((millis() - buttonTimers[channel]) > debounce) {
buttonState[channel] = input;
buttonDebounce[channel] = HIGH;
}
return buttonState[channel];
}
In order for the code to simultaneously a) keep looping to check the buttons, and b) achieve the desired behavior for valve2, you need a software state machine that keeps track of what valve2 is doing. In the code below, I renamed your state1 and state2 variables, so that I could introduce a new state
variable that controls valve2.
The state
variable is normally in the idle
state.
When button1 is pressed
state
is changed to active
After a 200 msec delay
state
is changed to done
The state
will stay done
until either button1 is released or button2 is pressed, since either of those actions resets the state
to idle
.
Here's what the code looks like
void loop()
{
int state = 0; //variable to keep track of valve2: 0=idle 1=active 2=done
unsigned long start; //variable to keep track of when valve2 was turned on
boolean pressed1 = (digitalRead(button1) == HIGH); //pressed1 is true if button1 is pressed
boolean pressed2 = (digitalRead(button2) == HIGH); //pressed2 is true if button2 is pressed
if ( !pressed1 && !pressed2 ) //if no buttons are pressed
{
digitalWrite(valve1,LOW); //make sure valve1 is off
digitalWrite(valve2,LOW); //make sure valve2 is off
state = 0; //clear valve2 state
}
else if ( pressed2 ) //if button2 is pressed
{
digitalWrite(valve1,HIGH); //turn on valve1
digitalWrite(valve2,HIGH); //turn on valve2
state = 0; //clear valve2 state
}
else //button1 is pressed
{
digitalWrite(valve1,HIGH); //turn on valve1
if ( state == 0 ) //if valve2 is idle
{
digitalWrite(valve2,HIGH); //turn on valve2
state = 1; //valve2 is active
start = millis(); //capture the start time
}
else if ( state == 1 ) //if valve2 is active
{
if ( millis() - start > 200 ) //has it been 200ms?
{
digitalWrite(valve2,LOW); //turn valve2 is off
state = 2; //valve2 is done
}
}
}
}