For dense matrices, the following code solves x^T A = b^T just fine.
Matrix3d A;
RowVector3d bT, xT;
A << 1, 2, 3,
0, 5, 6,
0, 0, 9;
bT << 1, 2, 3;
xT = A.triangularView<Upper>().solve<OnTheRight>(bT);
printf("(%g, %g, %g)", xT(0), xT(1), xT(2));
I cannot continue this approach to sparse matrices, however.
SparseMatrix<double> spA = A.sparseView();
spA.triangularView<Upper>().solve<OnTheRight>(bT); // COMPILE ERR!
spA.triangularView<Upper>().solve<OnTheRight>(bT.sparseView()); // COMPILE ERR!
The compile errors are
no matching function for call to ‘Eigen::SparseTriangularView<Eigen::SparseMatrix<double, 0>, 2>::solve(Eigen::RowVector3d&) const’
no matching function for call to ‘Eigen::SparseTriangularView<Eigen::SparseMatrix<double, 0>, 2>::solve(const Eigen::SparseView<Eigen::Matrix<double, 1, 3> >) const’
candidate is:
template<class OtherDerived> typename Eigen::internal::plain_matrix_type_column_major<OtherDerived>::type Eigen::SparseTriangularView::solve(const Eigen::MatrixBase<OtherDerived>&) const [with OtherDerived = OtherDerived, MatrixType = Eigen::SparseMatrix<double, 0>, int Mode = 2, typename Eigen::internal::plain_matrix_type_column_major<OtherDerived>::type = Eigen::internal::plain_matrix_type_column_major<T>::type]
I could not find the answer in the documentation, can anyone figure out how to do this?
EDIT SparseTriangularView::solve accepts neither OnTheLeft nor OnTheRight as template argument, but I just tried neglecting the argument and it seems to compile. My guess is that it is a missing feature and have reported it to the developers as so. If they confirm, I will post their response as an answer.
This is indeed a missing feature, but you can easily workaround by transposing everything:
xT.transpose() = spA.transpose().triangularView<Lower>().solve(bT.transpose());
or, if you directly deal with column vectors:
x = spA.transpose().triangularView<Lower>().solve(b);