A legacy app is in an endless loop at startup; I don't know why/how yet (code obfuscation contest candidate), but regarding the method that's being called over and over (which is called from several other methods), I thought, "I wonder if one of the methods that calls this is also calling another method that also calls it?"
I thought: "Nah, the compiler would be able to figure that out, and not allow it, or at least emit a warning!"
So I created a simple app to prove that would be the case:
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
method1();
}
private void button2_Click(object sender, EventArgs e)
{
method2();
}
private void method1()
{
MessageBox.Show("method1 called, which will now call method2");
method2();
}
private void method2()
{
MessageBox.Show("method2 called, which will now call method1");
// Note to self: Write an article entitled, "Copy-and-Paste Considered Harmful"
method1();
}
}
...but no! It compiles just fine. Why wouldn't the compiler flag this code as questionable at best? If either button is mashed, you are in never-never land!
Okay, sometimes you may want an endless loop (pacemaker code, etc.), but still I think a warning should be emitted.
That's not an endless loop, but an endless recursion. And this is much worse, since it leads to a stack overflow. Endless recursions are not desired in most languages, unless you are programming malware. Endless loops, however, are often intentional. Services and games typically run in endless loops.
In order to detect this kind of situation, the compiler would have to analyze the code by following the method calls; however the C# compiler limits this process to the immediate code within the current method. Here, uninitialized or unused variables can be tracked and unreachable code can be detected, for instance. There is a tradeoff to make between the compiling speed and the depth of static analysis and optimizations.
Also it is hardly possible to know the real intention of the programmer and there are situations where it is not possible, by a static analysis of the code, to determine whether a recursion will end or not. See also: Halting problem (Wikipedia)
Imagine that you wrote a method that is perfectly legal. Suddenly because you are calling this method from another place, your compiler complains and tells you that your method is no more legal. I can already see the flood of posts on SO like: "My method compiled yesterday. Today it does not compile any more. But I didn't change it".