Putting aside good programming practises. Ill give context after.
With respect to Objective-C string literals @"foobar"
Does this structure...
NSString *kFoobar = @"foobar";
[thing1 setValue:xyz forKey:kFoobar];
[thing2 setValue:abc forKey:kFoobar];
[thing3 setValue:def forKey:kFoobar];
[thing4 setValue:ghi forKey:kFoobar];
Use more runtime memory than this structure...
[thing1 setValue:xyz forKey:@"foobar"];
[thing2 setValue:abc forKey:@"foobar"];
[thing3 setValue:def forKey:@"foobar"];
[thing4 setValue:ghi forKey:@"foobar"];
Or does the compiler sort things out and merge all instances of @"foobar"
into a single reference in the TEXT section
Context...
I have inherited a large amount of source code in which most keys are expressed as string literals rather than string constants. Its not mine and the owner isn't going to pay for nice to have. Is there any point to spending time on constantifying the strings from a runtime view.
I did pass the exe through strings
and it appears as if the compiler does the heavy lifting but I'm not sure.
The two are, for all intents and purposes, identical. Only one instance of a given literal string is created per compilation unit. (And, in fact, in some cases even less, since the system will attempt to combine them.)
The var kFoobar
used in the first example would, if a local var, be a temporary which may never be more than a register. At most it would occupy 8 bytes in the stack frame that goes away on method exit. And the compiler would likely load a temp to point to the literal anyway, for the second case. So the code for the two examples could actually be identical.
If kFoobar
were some sort of instance or global var then the pointer var itself it would of course occupy instance or global space, but it would have no other effect.
And the NSMutableDictionary does not need to make a local copy of the string (when it's used as a key) because NSString is immutable. The single copy is shared by all referencing objects.