I am doing a problem in which I have to find the last two digits before the decimal point for the number
[4 + sqrt(11)]n.
For example, when n = 4, [4 + sqrt(11)]4 = 2865.78190... the answer is 65. Where n can vary from 2 <= n <= 109.
My solution - I have tried to build a square root function which calculate the sqrt of 11 which a precision equal to value of n input by the user.
I have used BigDecimal
in Java to avoid overflow problems.
public class MathGenius {
public static void main(String[] args) {
Scanner reader = new Scanner(System.in);
long a = 0;
try {
a = reader.nextInt();
} catch (Exception e) {
System.out.println("Please enter a integer value");
System.exit(0);
}
// Setting precision for square root 0f 11. str contain string like 0.00001
StringBuffer str = new StringBuffer("0.");
for (long i = 1; i <= a; i++)
str.append('0');
str.append('1');
// Calculating square root of 11 having precision equal to number enter
// by the user.
BigDecimal num = new BigDecimal("11"), precision = new BigDecimal(
str.toString()), guess = num.divide(new BigDecimal("2")), change = num
.divide(new BigDecimal("4"));
BigDecimal TWO = new BigDecimal("2.0");
BigDecimal MinusOne = new BigDecimal("-1"), temp = guess
.multiply(guess);
while ((((temp).subtract(num)).compareTo(precision) > 0)
|| num.subtract(temp).compareTo(precision) > 0) {
guess = guess.add(((temp).compareTo(num) > 0) ? change
.multiply(MinusOne) : change);
change = change.divide(TWO);
temp = guess.multiply(guess);
}
// Calculating the (4+sqrt(11))^n
BigDecimal deci = BigDecimal.ONE;
BigDecimal num1 = guess.add(new BigDecimal("4.0"));
for (int i = 1; i <= a; i++)
deci = deci.multiply(num1);
// Calculating two digits before the decimal point
StringBuffer str1 = new StringBuffer(deci.toPlainString());
int index = 0;
while (str1.charAt(index) != '.')
index++;
// Printing output
System.out.print(str1.charAt(index - 2));
System.out.println(str1.charAt(index - 1));
}
}
This solution works up to n = 200, but then it begins to slow down. It stops working for n = 1000.
What is a good method to deal with problem?
2 -- 53
3 -- 91
4 65
5 67
6 13
7 71
8 05
9 87
10 73
11 51
12 45
13 07
14 33
15 31
16 85
17 27
18 93
19 11
20 25
21 47
22 53
23 91
24 65
25 67
At n=22 the results seem to repeat from the position of n=2.
So keep those 20 values in an array in the same order as in your list e.g. nums[20]
.
Then when the user provides an n:
return nums[(n-2)%20]
There is now a proof of this pattern repeating here.
Alternatively, if you insist on computing at length; since you calculating the power by looping multiplication (and not BigDecimal pow(n)) you could trim the number you are working with at the front to the last 2 digits and the fractional part.