Search code examples
c++algorithmmatchingpriority-queuedijkstra

Optimizing a dijkstra implementation


QUESTION EDITED, now I only want to know if a queue can be used to improve the algorithm.

I have found this implementation of a mix cost max flow algorithm, which uses dijkstra: http://www.stanford.edu/~liszt90/acm/notebook.html#file2

Gonna paste it here in case it gets lost in the internet void:

// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Karp 1972).  This implementation keeps track of
// forward and reverse edges separately (so you can set cap[i][j] !=
// cap[j][i]).  For a regular max flow, set all edge costs to 0.
//
// Running time, O(|V|^2) cost per augmentation
//     max flow:           O(|V|^3) augmentations
//     min cost max flow:  O(|V|^4 * MAX_EDGE_COST) augmentations
//     
// INPUT: 
//     - graph, constructed using AddEdge()
//     - source
//     - sink
//
// OUTPUT:
//     - (maximum flow value, minimum cost value)
//     - To obtain the actual flow, look at positive values only.

#include <cmath>
#include <vector>
#include <iostream>

using namespace std;

typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long L;
typedef vector<L> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
typedef vector<PII> VPII;

const L INF = numeric_limits<L>::max() / 4;

struct MinCostMaxFlow {
  int N;
  VVL cap, flow, cost;
  VI found;
  VL dist, pi, width;
  VPII dad;

  MinCostMaxFlow(int N) : 
    N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)), 
    found(N), dist(N), pi(N), width(N), dad(N) {}

  void AddEdge(int from, int to, L cap, L cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
  }

  void Relax(int s, int k, L cap, L cost, int dir) {
    L val = dist[s] + pi[s] - pi[k] + cost;
    if (cap && val < dist[k]) {
      dist[k] = val;
      dad[k] = make_pair(s, dir);
      width[k] = min(cap, width[s]);
    }
  }

  L Dijkstra(int s, int t) {
    fill(found.begin(), found.end(), false);
    fill(dist.begin(), dist.end(), INF);
    fill(width.begin(), width.end(), 0);
    dist[s] = 0;
    width[s] = INF;

    while (s != -1) {
      int best = -1;
      found[s] = true;
      for (int k = 0; k < N; k++) {
        if (found[k]) continue;
        Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
        Relax(s, k, flow[k][s], -cost[k][s], -1);
        if (best == -1 || dist[k] < dist[best]) best = k;
      }
      s = best;
    }

    for (int k = 0; k < N; k++)
      pi[k] = min(pi[k] + dist[k], INF);
    return width[t];
  }

  pair<L, L> GetMaxFlow(int s, int t) {
    L totflow = 0, totcost = 0;
    while (L amt = Dijkstra(s, t)) {
      totflow += amt;
      for (int x = t; x != s; x = dad[x].first) {
        if (dad[x].second == 1) {
          flow[dad[x].first][x] += amt;
          totcost += amt * cost[dad[x].first][x];
        } else {
          flow[x][dad[x].first] -= amt;
          totcost -= amt * cost[x][dad[x].first];
        }
      }
    }
    return make_pair(totflow, totcost);
  }
};

My question is if it can be improved by using a priority queue inside of Dijkstra(). I tried but I couldn't get it to work properly. Actually I suspect that in Dijkstra it should be looping over adjacent nodes, not all nodes...

Thanks a lot.


Solution

  • Surely Dijkstra's algorithm can be improved by using minheap. After we put a vertex into shortest-path tree and process (i.e. label) all adjacent vertices, our next step is to select the vertex with smallest label, not yet in the tree.
    This is where minheap comes to mind. Rather than sequentially scan through all vertices, we extract the min element from heap and restructure it, which takes O(logn) time vs O(n). Note that the heap is going to keep only those vertices that are not yet in the shortest-path tree. However we should be able to somehow modify vertices in the heap, if we update their labels.