I am trying to use the Clipper library to modify a graphics path.
I have list of widths that represent outlines / strokes. I want to start with the largest first and work my way down to the smallest.
For this example, we will add 2 strokes with widths of 20 and 10.
I want to take take my graphics path, and expand / offset it by 20 pixels into a new graphics path. I do not want to alter the original path. Then I want to fill the new graphics path with a solid color.
Next, I want to take my original graphics path, and expand / offset it by 10 pixels into a new graphics path. I want to fill this new path with a different color.
Then I want to fill my original path with a different color.
What is the proper way to do this. I have the following method that I created to try and do this, but it is not working properly.
private void createImage(Graphics g, GraphicsPath gp, List<int> strokeWidths)
{
ClipperOffset pathConverter = new ClipperOffset();
Clipper c = new Clipper();
gp.Flatten();
foreach(int strokeSize in strokeWidths)
{
g.clear();
ClipperPolygons polyList = new ClipperPolygons();
GraphicsPath gpTest = (GraphicsPath)gp.Clone();
PathToPolygon(gpTest, polyList, 100);
gpTest.Reset();
c.Execute(ClipType.ctUnion, polyList, PolyFillType.pftPositive, PolyFillType.pftEvenOdd);
pathConverter.AddPaths(polyList, JoinType.jtMiter, EndType.etClosedPolygon);
pathConverter.Execute(ref polyList, strokeSize * 100);
for (int i = 0; i < polyList.Count; i++)
{
// reverses scaling
PointF[] pts2 = PolygonToPointFArray(polyList[i], 100);
gpTest.AddPolygon(pts2);
}
g.FillPath(new SolidBrush(Color.Red), gpTest);
}
}
private void PathToPolygon(GraphicsPath path, ClipperPolygons polys, Single scale)
{
GraphicsPathIterator pathIterator = new GraphicsPathIterator(path);
pathIterator.Rewind();
polys.Clear();
PointF[] points = new PointF[pathIterator.Count];
byte[] types = new byte[pathIterator.Count];
pathIterator.Enumerate(ref points, ref types);
int i = 0;
while (i < pathIterator.Count)
{
ClipperPolygon pg = new ClipperPolygon();
polys.Add(pg);
do
{
IntPoint pt = new IntPoint((int)(points[i].X * scale), (int)(points[i].Y * scale));
pg.Add(pt);
i++;
}
while (i < pathIterator.Count && types[i] != 0);
}
}
private PointF[] PolygonToPointFArray(ClipperPolygon pg, float scale)
{
PointF[] result = new PointF[pg.Count];
for (int i = 0; i < pg.Count; ++i)
{
result[i].X = (float)pg[i].X / scale;
result[i].Y = (float)pg[i].Y / scale;
}
return result;
}
While you've made a pretty reasonable start, you seem to be getting muddled in your createImage() function. You mention wanting different colors with the different offsets and so you're missing a colors array to match your strokeWidths array. Also, it's unclear to me what you're doing with the clipping (union) stuff, but it's probably unnecessary.
So in pseudo-code I suggest something like the following ....
static bool CreateImage(Graphics g, GraphicsPath gp,
List<int> offsets, List<Color> colors)
{
const scale = 100;
if (colors.Count < offsets.Count) return false;
//convert GraphicsPath path to Clipper paths ...
Clipper.Paths cpaths = GPathToCPaths(gp.Flatten(), scale);
//setup the ClipperOffset object ...
ClipperOffset co = new ClipperOffsets();
co.AddPaths(cpaths, JoinType.jtMiter, EndType.etClosedPolygon);
//now loop through each offset ...
foreach(offset in offsets, color in colors)
{
Clipper.Paths csolution = new Clipper.Paths();
co.Execute(csolution, offset);
if (csolution.IsEmpty) break; //useful for negative offsets
//now convert back to floating point coordinate array ...
PointF[] solution = CPathToPointFArray(csolution, scale);
DrawMyPaths(Graphics g, solution, color);
}
}
And something to watch for if you were to use increasingly larger offsets, each polygon drawn in the 'foreach' loop would hide previously drawn polygons.