Search code examples
calgorithmoptimizationgccdivide-and-conquer

C implementation for D&C is faster than Naive solution for matrix multiplication?


Both the Divide & Conquer (D&C) solution and the Naive solution for matrix multiplication are implemented "in-place" with C programming language. So no dynamic memory allocation at all.

As we have learned for both solutions, they actually have the same time complexity which is O(n^3). And right now they share the same space complexity since all of they are in-place implemented. Then how could one is so much faster than another?

Used clock_gettime to obtain the time.

With Cygwin on Windows 7 of a core i7 laptop, the D&C solution runs surprisingly faster than Naive solution (redundancy log removed):

Edited:

"algo0" indicates Naive solution, while "algo1" indicates D&C solution.

"len" indicates the width & height of the matrix. And the matrix is NxN matrix.

"00:00:00:000:003:421" means: "hour:minute:second:millisec:microsec:nanosec".

[alg0]time cost[0, len=00000002]: 00:00:00:000:003:421 (malloc_cnt=0)
[alg1]time cost[0, len=00000002]: 00:00:00:000:000:855 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[1, len=00000004]: 00:00:00:000:001:711 (malloc_cnt=0)
[alg1]time cost[1, len=00000004]: 00:00:00:000:001:711 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[2, len=00000008]: 00:00:00:000:009:408 (malloc_cnt=0)
[alg1]time cost[2, len=00000008]: 00:00:00:000:008:553 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[3, len=00000016]: 00:00:00:000:070:134 (malloc_cnt=0)
[alg1]time cost[3, len=00000016]: 00:00:00:000:065:858 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[4, len=00000032]: 00:00:00:000:564:066 (malloc_cnt=0)
[alg1]time cost[4, len=00000032]: 00:00:00:000:520:873 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[5, len=00000064]: 00:00:00:004:667:337 (malloc_cnt=0)
[alg1]time cost[5, len=00000064]: 00:00:00:004:340:188 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[6, len=00000128]: 00:00:00:009:662:680 (malloc_cnt=0)
[alg1]time cost[6, len=00000128]: 00:00:00:008:139:403 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[7, len=00000256]: 00:00:00:080:031:116 (malloc_cnt=0)
[alg1]time cost[7, len=00000256]: 00:00:00:065:395:329 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[8, len=00000512]: 00:00:00:836:392:576 (malloc_cnt=0)
[alg1]time cost[8, len=00000512]: 00:00:00:533:799:924 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[9, len=00001024]: 00:00:09:942:086:780 (malloc_cnt=0)
[alg1]time cost[9, len=00001024]: 00:00:04:307:021:362 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[10, len=00002048]: 00:02:53:413:046:992 (malloc_cnt=0)
[alg1]time cost[10, len=00002048]: 00:00:35:588:289:832 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[11, len=00004096]: 00:25:46:154:930:041 (malloc_cnt=0)
[alg1]time cost[11, len=00004096]: 00:04:38:196:205:661 (malloc_cnt=0)

While even on Raspberry Pi which has only one ARM core, the result is similar (also, redundancy data removed):

[alg0]time cost[0, len=00000002]: 00:00:00:000:005:999 (malloc_cnt=0)
[alg1]time cost[0, len=00000002]: 00:00:00:000:051:997 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[1, len=00000004]: 00:00:00:000:004:999 (malloc_cnt=0)
[alg1]time cost[1, len=00000004]: 00:00:00:000:008:000 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[2, len=00000008]: 00:00:00:000:014:999 (malloc_cnt=0)
[alg1]time cost[2, len=00000008]: 00:00:00:000:023:999 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[3, len=00000016]: 00:00:00:000:077:996 (malloc_cnt=0)
[alg1]time cost[3, len=00000016]: 00:00:00:000:157:991 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[4, len=00000032]: 00:00:00:000:559:972 (malloc_cnt=0)
[alg1]time cost[4, len=00000032]: 00:00:00:001:248:936 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[5, len=00000064]: 00:00:00:005:862:700 (malloc_cnt=0)
[alg1]time cost[5, len=00000064]: 00:00:00:010:739:450 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[6, len=00000128]: 00:00:00:169:060:336 (malloc_cnt=0)
[alg1]time cost[6, len=00000128]: 00:00:00:090:290:373 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[7, len=00000256]: 00:00:03:207:909:599 (malloc_cnt=0)
[alg1]time cost[7, len=00000256]: 00:00:00:771:870:443 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[8, len=00000512]: 00:00:35:725:494:551 (malloc_cnt=0)
[alg1]time cost[8, len=00000512]: 00:00:08:139:712:988 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[9, len=00001024]: 00:06:29:762:101:314 (malloc_cnt=0)
[alg1]time cost[9, len=00001024]: 00:01:50:964:568:907 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[10, len=00002048]: 00:52:03:950:717:474 (malloc_cnt=0)
[alg1]time cost[10, len=00002048]: 00:14:19:222:020:444 (malloc_cnt=0)

My first guess is that it must be some optimizations done by GCC. But exactly how?

Following are codes for both Naive solution and D&C solution. Naive solution:

void ClassicalMulti(int const * const mat1,
                    int const * const mat2,
                    int * const matrix,
                    const int n) {
    if (!mat1 || !mat2 || n<=0) {
        printf("ClassicalMulti: Invalid Input\n");
        return;
    }

    int cnt, row, col;

    for (row=0;row<n;++row) {
        for (col=0;col<n;++col) {
            for (cnt=0;cnt<n;++cnt) {
                matrix[row*n+col] += mat1[row*n+cnt] * mat2[cnt*n+col];
            }
        }
    }
}

Divide and Conquer solution:

void DCMulti(int const * const mat1,
             int const * const mat2,
             int * const matrix,
             const int p1,
             const int p2,
             const int pn,
             const int n) {
    if (!mat1 || !mat2 || !matrix || n<2 || p1<0 || p2 <0 || pn<2) {
        printf("DCMulti: Invalid Input\n");
        return;
    }

    if (pn == 2) {
        int pos = (p1/n)*n + p2%n;
        matrix[pos]     += mat1[p1]*mat2[p2] + mat1[p1+1]*mat2[p2+n];
        matrix[pos+1]   += mat1[p1]*mat2[p2+1] + mat1[p1+1]*mat2[p2+1+n];
        matrix[pos+n]   += mat1[p1+n]*mat2[p2] + mat1[p1+1+n]*mat2[p2+n];
        matrix[pos+1+n] += mat1[p1+n]*mat2[p2+1] + mat1[p1+1+n]*mat2[p2+1+n];
    } else {
        int a = p1;
        int b = p1 + pn/2;
        int c = p1 + pn*n/2;
        int d = p1 + pn*(n+1)/2;
        int e = p2;
        int f = p2 + pn/2;
        int g = p2 + pn*n/2;
        int h = p2 + pn*(n+1)/2;
        DCMulti(mat1, mat2, matrix, a, e, pn/2, n);   // a*e
        DCMulti(mat1, mat2, matrix, b, g, pn/2, n);   // b*g
        DCMulti(mat1, mat2, matrix, a, f, pn/2, n);   // a*f
        DCMulti(mat1, mat2, matrix, b, h, pn/2, n);   // b*h 
        DCMulti(mat1, mat2, matrix, c, e, pn/2, n);   // c*e 
        DCMulti(mat1, mat2, matrix, d, g, pn/2, n);   // d*g 
        DCMulti(mat1, mat2, matrix, c, f, pn/2, n);   // c*f 
        DCMulti(mat1, mat2, matrix, d, h, pn/2, n);   // d*h 
    }
}

Solution

  • The difference in these two approaches is simply in the memory access patterns. i.e. cache locality; for large matrices, especially the rows compete for the same cache lines and cause increasingly large penalty for cache misses. In the end, the D&C -strategy pays off, even though a globally better approach would be to divide the problem in say 8x8 blocks -- a technique called loop tiling. (Not surprisingly, matrix multiplication is presented as the arch example in the wikipedia article...)