I have a string s containing such key-value pairs, and I would like to construct from it data frame,
s="{'#JJ': 121, '#NN': 938, '#DT': 184, '#VB': 338, '#RB': 52}"
r1<-sapply(strsplit(s, "[^0-9_]+",as.numeric),as.numeric)
r2<-sapply(strsplit(s, "[^A-Z]+",as.numeric),as.character)
d<-data.frame(id=r2,value=r1)
what gives:
r1
[,1]
[1,] NA
[2,] 121
[3,] 938
[4,] 184
[5,] 338
[6,] 52
r2
[,1]
[1,] ""
[2,] "JJ"
[3,] "NN"
[4,] "DT"
[5,] "VB"
[6,] "RB"
d
id value
1 NA
2 JJ 121
3 NN 938
4 DT 184
5 VB 338
6 RB 52
First I would like don't have NA and "" after using regular expression. I think it should be something like {2,} meaning match all from second occurence, but I can not do that in R.
Another think I would like to do will be: having a data frame with column like below:
m
1 {'#JJ': 121, '#NN': 938, '#DT': 184, '#VB': 338, '#RB': 52}
2 {'#NN': 168, '#DT': 59, '#VB': 71, '#RB': 5, '#JJ': 35}
3 {'#JJ': 18, '#NN': 100, '#DT': 23, '#VB': 52, '#RB': 11}
4 {'#NN': 156, '#JJ': 39, '#DT': 46, '#VB': 67, '#RB': 21}
5 {'#NN': 112, '#DT': 39, '#VB': 57, '#RB': 8, '#JJ': 32}
6 {'#DT': 236, '#NN': 897, '#VB': 420, '#RB': 122, '#JJ': 240}
7 {'#NN': 316, '#RB': 25, '#DT': 66, '#VB': 112, '#JJ': 81}
8 {'#NN': 198, '#DT': 29, '#VB': 85, '#RB': 37, '#JJ': 44}
9 {'#RB': 30}
10 {'#NN': 373, '#DT': 48, '#VB': 71, '#RB': 21, '#JJ': 36}
11 {'#NN': 49, '#DT': 17, '#VB': 23, '#RB': 11, '#JJ': 8}
12 {'#NN': 807, '#JJ': 135, '#DT': 177, '#VB': 315, '#RB': 69}
I would like to iterate over each row and split it numerical values into the columns named by the key.
Example of few rows showing, how I would like it will looks like:
I would use something that parses JSON, what your data seems to be:
s <- "{'#JJ': 121, '#NN': 938, '#DT': 184, '#VB': 338, '#RB': 52}"
parse.one <- function(s) {
require(rjson)
v <- fromJSON(gsub("'", '"', s))
data.frame(id = gsub("#", "", names(v)),
value = unlist(v, use.names = FALSE))
}
parse.one(s)
# id value
# 1 JJ 121
# 2 NN 938
# 3 DT 184
# 4 VB 338
# 5 RB 52
For the second part of the question, I would pass a slightly modified version of the parse.one
function through lapply
, then let plyr's rbind.fill
function align the pieces together while filling missing values with NA
:
df <- data.frame(m = c(
"{'#JJ': 121, '#NN': 938, '#DT': 184, '#VB': 338, '#RB': 52}",
"{'#NN': 168, '#DT': 59, '#VB': 71, '#RB': 5, '#JJ': 35}",
"{'#JJ': 18, '#NN': 100, '#DT': 23, '#VB': 52, '#RB': 11}",
"{'#JJ': 12, '#VB': 5}"
))
parse.one <- function(s) {
require(rjson)
y <- fromJSON(gsub("'", '"', s))
names(y) <- gsub("#", "", names(y))
as.data.frame(y)
}
library(plyr)
rbind.fill(lapply(df$m, parse.one))
# JJ NN DT VB RB
# 1 121 938 184 338 52
# 2 35 168 59 71 5
# 3 18 100 23 52 11
# 4 12 NA NA 5 NA