I am not quite sure what the technical term for this is. I have a GUI with interactive graphics. After the user has interacted with the GUI, I need to perform some CPU intensive action. However, user input is very frequent, so I only want to call the function after e.g. 1000ms of no userinput. Below the pattern that I use:
scheduler = (function(){
var timer;
function exec(call, delay){
clearTimeout(timer);
timer = setTimeout(call, delay);
};
return exec;
})()
I.e. if the 3 calls to scheduler
are done right after each other, only the final one will actually be executed:
scheduler(function(){alert('foo')}, 1000);
scheduler(function(){alert('bar')}, 1000);
scheduler(function(){alert('zoo')}, 1000);
It seems to work, but it feels a bit hacky I am a little worried about any caveats of Javascript setTimeout
, especially the scoping problems. Does this seem like a reliable pattern I could use on a larger scale? Will the inline function that I pass to scheduler
be able to lookup all objects in its lexical scope as usual, when it is called by settimeout
? What about if I have several of these scheduler instances? Could they interfere with each other? Is there an alternative way of accomplishing this?
The debounce
function in underscore.js does exactly this:
debounce
_.debounce(function, wait, [immediate])
Creates and returns a new debounced version of the passed function that will postpone its execution until after wait milliseconds have elapsed since the last time it was invoked. Useful for implementing behavior that should only happen after the input has stopped arriving. For example: rendering a preview of a Markdown comment, recalculating a layout after the window has stopped being resized, and so on.