I've always believed that using conditional boolean operators (a.k.a. short-circuiting) in stead of regular boolean operators doesn't affect the outcome of an expression.
var result = true | false & false;
has the same result as
var result = true || false && false
Both expressions result in true
.
But what if I would mix regular and conditional operators?
var result1 = true || false & false;
var result2 = true | false && false;
What would you expect? I would expect these to still return true
. But that isn't the case. Result2 will be false
!
I know this is because of the operator precedence. The precedence order is & | && ||
. This seems counter intuitive to me. I'd expect an order of & && | ||
, in which case all results would be the same (I think).
So I guess my real question isn't if short-circuiting can change the result. The question is why the order of precedence is such that short-circuiting can change the result.
var result2 = true | false && false;
Is calculated as:
var result2 = (true | false) && false;
Because |
comes before &&
. Now (true | false)
evaluates to true
, and true && false
is false.
As for the why, see this question:
The && and || operators were added later for their "short-circuiting" behavior. Dennis Ritchie admits in retrospect that the precedence of the bitwise operators should have been changed when the logical operators were added. But with several hundred kilobytes of C source code in existence at that point and an installed base of three computers, Dennis thought it would be too big of a change in the C language...