I know a pointer to one type may be converted to a pointer of another type. I have three questions:
A program well written usually does not use much pointer typecasting. There could be a need to use ptr typecast for malloc for instance (declared (void *)malloc(...)
), but it is not even necessary in C (while a few compilers may complain).
int *p = malloc(sizeof(int)); // no need of (int *)malloc(...)
However in system applications, sometimes you want to use a trick to perform binary or specific operation - and C, a language close to the machine structure, is convenient for that. For instance say you want to analyze the binary structure of a double (that follows thee IEEE 754 implementation), and working with binary elements is simpler, you may declare
typedef unsigned char byte;
double d = 0.9;
byte *p = (byte *)&d;
int i;
for (i=0 ; i<sizeof(double) ; i++) { ... work with b ... }
You may also use an union, this is an exemple.
A more complex utilisation could be the simulation of the C++ polymorphism, that requires to store the "classes" (structures) hierarchy somewhere to remember what is what, and perform pointer typecasting to have, for instance, a parent "class" pointer variable to point at some time to a derived class (see the C++ link also)
CRectangle rect;
CPolygon *p = (CPolygon *)▭
p->whatami = POLY_RECTANGLE; // a way to simulate polymorphism ...
process_poly ( p );
But in this case, maybe it's better to directly use C++!
Pointer typecast is to be used carefully for well determined situations that are part of the program analysis - before development starts.
Pointer typecast potential dangers
s1 *p = (s1 *)&s2;
: relying on their size and alignment may lead to an error(But to be fair, a skilled C programmer wouldn't commit the above mistakes...)
Best practice