in the 2D array plotted below, we are interested in finding the "lump" region. As you can see it is not a continuous graph. Also, we know the approximate dimension of the "lump" region. A set of data are given below. First column contains the y values and the second contains the x values. Any suggestion as to how to detect lump regions like this?
21048 -980
21044 -956
21040 -928
21036 -904
21028 -880
21016 -856
21016 -832
21016 -808
21004 -784
21004 -760
20996 -736
20996 -712
20992 -684
20984 -660
20980 -636
20968 -612
20968 -588
20964 -564
20956 -540
20956 -516
20952 -492
20948 -468
20940 -440
20936 -416
20932 -392
20928 -368
20924 -344
20920 -320
20912 -296
20912 -272
20908 -248
20904 -224
20900 -200
20900 -176
20896 -152
20888 -128
20888 -104
20884 -80
20872 -52
20864 -28
20856 -4
20836 16
20812 40
20780 64
20748 88
20744 112
20736 136
20736 160
20732 184
20724 208
20724 232
20724 256
20720 280
20720 304
20720 328
20724 352
20724 376
20732 400
20732 424
20736 448
20736 472
20740 496
20740 520
20748 544
20740 568
20736 592
20736 616
20736 640
20740 664
20740 688
20736 712
20736 736
20744 760
20748 788
20760 812
20796 836
20836 860
20852 888
20852 912
20844 936
20836 960
20828 984
20820 1008
20816 1032
20820 1056
20852 1080
20900 1108
20936 1132
20956 1156
20968 1184
20980 1208
20996 1232
21004 1256
21012 1280
21016 1308
21024 1332
21024 1356
21028 1380
21024 1404
21020 1428
21016 1452
21008 1476
21004 1500
20992 1524
20980 1548
20956 1572
20944 1596
20920 1616
20896 1640
20872 1664
20848 1684
20812 1708
20752 1728
20664 1744
20640 1768
20628 1792
20628 1816
20620 1836
20616 1860
20612 1884
20604 1908
20596 1932
20588 1956
20584 1980
20580 2004
20572 2024
20564 2048
20552 2072
20548 2096
20536 2120
20536 2144
20524 2164
20516 2188
20512 2212
20508 2236
20500 2260
20488 2280
20476 2304
20472 2328
20476 2352
20460 2376
20456 2396
20452 2420
20452 2444
20436 2468
20432 2492
20432 2516
20424 2536
20420 2560
20408 2584
20396 2608
20388 2628
20380 2652
20364 2676
20364 2700
20360 2724
20352 2744
20344 2768
20336 2792
20332 2812
20328 2836
20332 2860
20340 2888
20356 2912
20380 2940
20428 2968
20452 2996
20496 3024
20532 3052
20568 3080
20628 3112
20652 3140
20728 3172
20772 3200
20868 3260
20864 3284
20864 3308
20868 3332
20860 3356
20884 3384
20884 3408
20912 3436
20944 3464
20948 3488
20948 3512
20932 3536
20940 3564
It may be just a coincidence, but the lump you show looks fairly parabolic. It's not completely clear what you mean by "know the approximate dimension of the lump region" but if you mean that you know approximately how wide it is (i.e. how much of the x-axis it takes up), you could simply slide a window of that width along the x-axis and do a parabolic fit (a.k.a. polyfit with degree 2) to all data that fits into the window at each point. Then, compute r^2 goodness-of-fit values at each point and the point with the r^2 closest to 1.0 would be the best fit. You'd probably need a threshold value and to throw out those where the x^2 coefficient was positive (to find lumps rather than dips) for sanity, but this might be a workable approach.
Even if the parabolic look is a coincidence, I think this would ba a reasonable approach--a downward pointing parabola is a pretty good description of a general "lump" by any definition I can think of.
Edit: Attempted Implementation Below
I got curious and went ahead and implemented my proposed solution (with slight modifications). First, here's the code (ugly but functional):
function [x, p] = find_lump(data, width)
n = size(data, 1);
f = plot(data(:,1),data(:,2), 'bx-');
hold on;
bestX = -inf;
bestP = [];
bestMSE = inf;
bestXdat = [];
bestYfit = [];
spanStart = 0;
spanStop = 1;
spanWidth = 0;
while (spanStop < n)
if (spanStart > 0)
% Drop first segment from window (since we'll advance x):
spanWidth = spanWidth - (data(spanStart + 1, 1) - x);
end
spanStart = spanStart + 1;
x = data(spanStart, 1);
% Advance spanStop index to maintain window width:
while ((spanStop < n) && (spanWidth <= width))
spanStop = spanStop + 1;
spanWidth = data(spanStop, 1) - x;
end
% Correct for overshoot:
if (spanWidth > width)
spanStop = spanStop - 1;
spanWidth = data(spanStop, 1) - x;
end
% Fit parabola to data in the current window:
xdat = data(spanStart:spanStop, 1);
ydat = data(spanStart:spanStop, 2);
p = polyfit(xdat, ydat, 2);
% Compute fit quality (mean squared error):
yfit = polyval(p,xdat);
r = yfit - ydat;
mse = (r' * r) / size(xdat,1);
if ((p(1) < -0.002) && (mse < bestMSE))
bestMSE = mse;
bestX = x;
bestP = p;
bestXdat = xdat;
bestYfit = yfit;
end
end
x = bestX;
p = bestP;
plot(bestXdat,bestYfit,'r-');
...and here's a result using the given data (I swapped the columns so column 1 is x values and column 2 is y values) with a window width parameter of 750:
Comments:
I opted to use mean squared error between the fit parabola and the original data within each window as the quality metric, rather than correlation coefficient (r^2 value) due to laziness more than anything else. I don't think the results would be much different the other way.
The output is heavily dependent on the threshold value chosen for the quadratic coefficient (see the bestMSE condition at the end of the loop). Truth be told, I cheated here by outputing the fit coefficients at each point, then selected the threshold based on the known lump shape. This is equivalent to using a lump template as suggested by @chaohuang and may not be very robust depending on the expected variance in the data.
Note that some sort of shape control parameter seems to be necessary if this approach is used. The reason is that any random (smooth) run of data can be fit nicely to some parabola, but not necessarily around the maximum value. Here's a result where I set the threshold to zero and thus only restricted the fit to parabolas pointing downwards:
An improvement would be to add a check that the fit parabola at least has a maximum within the window interval (that is, check that the first derivative goes to zero within the window so we at least find local maxima along the curve). This alone is not sufficient as you still might have a tiny little lump that fits a parabola better than an "obvious" big lump as seen in the given data set.