Search code examples
javaalgorithmknights-tour

How can this knight's tour algorithm be fixed?


In the 8X8 chess board, taking only knight into consideration, if we start the knight from any square of the chessboard, the aim is to cover max number of square , without repeating any square . so far I have found the most efficient solution with my code below is:

60    29    34    49    0    15    46    0

35    50    1    16    45    48    11    0

30    59    28    33    2    9    14    47

51    36    31    44    17    12    3    10

58    43    52    27    32    25    8    13

37    40    55    18    23    6    21    4

42    57    38    53    26    19    24    7

39    54    41    56    0    22    5    20

Where the number starting with 1, shows the path followed by knight. My question is can this code be corrected for a perfect answer which is 64 (mine reaches only 60)?

package game;
import java.io.BufferedReader;  
import java.io.IOException;
import java.io.InputStreamReader;

public class Knight {
static int board[][]=new int[8][8];
static int value=1;
public static void zero()
{
    for(int i=0;i<7;i++)
        for(int j=0;j<7;j++)
            board[i][j]=0;
}

public static void knightpos(int x,int y)throws IOException
{
    if(value==61)
    {   System.out.println();
    for(int i=0;i<8;i++)
    {
        System.out.println();
        System.out.println();
        for(int j=0;j<8;j++)
        System.out.print("    "+board[i][j]);
    }

        System.exit(0);
    }


    if(x+1<=7&&y+2<=7)
    {
        if(board[x+1][y+2]==0)
        {  board[x+1][y+2]=value++;
           knightpos(x+1,y+2);
        }
    }

    if(x+2<=7&&y+1<=7)
    {
         if(board[x+2][y+1]==0)
        {
           board[x+2][y+1]=value++;
           knightpos(x+2,y+1);
        }
    }

    if(x-2>=0&&y-1>=0)
    {
        if(board[x-2][y-1]==0)
        {board[x-2][y-1]=value++;
           knightpos(x-2,y-1);
        }
    }

    if(x+2<=7&&y-1>=0)
    {
          if(board[x+2][y-1]==0)
        {board[x+2][y-1]=value++;
           knightpos(x+2,y-1);
        }
    }

    if(x+1<=7&&y-2>=0)
    {
        if(board[x+1][y-2]==0)
        {board[x+1][y-2]=value++;
           knightpos(x+1,y-2);}
    }

    if(x-1>=0&&y-2>=0)
    {
          if(board[x-1][y-2]==0)
        {board[x-1][y-2]=value++;
           knightpos(x-1,y-2);}
    }

    if(x-2>=0&&y+1<=7)
    {
          if(board[x-2][y+1]==0)
        {board[x-2][y+1]=value++;
           knightpos(x-2,y+1);}
    }

    if(x-1>=0&&y+2<=7)
    {
          if(board[x-1][y+2]==0)
        {board[x-1][y+2]=value++;
           knightpos(x-1,y+2);}
    }
    board[x][y]=0;
    value--;
    return;
}

public static boolean chk() {

    for(int i=0;i<7;i++)
        for(int j=0;j<7;j++)
            if(board[i][j]==0)
                return false;

    return true;

}


public static void main(String args[])throws IOException
{
    InputStreamReader ir = new InputStreamReader(System.in);
    BufferedReader br = new BufferedReader(ir);
    System.out.println("Knight chess game input x,y position ");
    int x=Integer.parseInt(br.readLine());
    int y=Integer.parseInt(br.readLine());
{
    if(!chk())
            {   
                zero();
                value=1;
                knightpos(x,y);
            }

}           
}
}

Solution

  • 60    29    34    49    0    15    46    0
    
    35    50    1    16    45    48    11    0
    
    30    59    28    33    2    9    14    47
    
    51    36    31    44    17    12    3    10
    
    58    43    52    27    32    25    8    13
    
    37    40    55    18    23    6    21    4
    
    42    57    38    53    26    19    24    7
    
    39    54    41    56    0    22    5    20
    

    If you look at your solution, the first step, where you could branch to a zero is step 3. As additional information, we see, that you could have jumped from 60 to 1 again, building a cycle (but you couldn't, because you aren't allowed to visit a place twice.

    But if you start at 4, you can move to 60, from there to 1, 2, 3 and now you can visit one of the zero fields.

    However, that's only an improvement for 1 field. Since the other unvisited fields aren't visitable in sequence, this can't be improved further in the same way.