I am currently making a method to load in a noisy heightmap, but lack the triangles to do so. I want to make an algorithm that will take an image, its width and height and construct a terrain node out of it.
Here's what I have so far, in somewhat pseudo
Vertex* vertices = new Vertices[image.width * image.height];
Index* indices; // How do I judge how many indices I will have?
float scaleX = 1 / image.width;
float scaleY = 1 / image.height;
float currentYScale = 0;
for(int y = 0; y < image.height; ++y) {
float currentXScale = 0;
for (int x = 0; x < image.width; ++x) {
Vertex* v = vertices[x * y];
v.x = currentXScale;
v.y = currentYScale;
v.z = image[x,y];
currentXScale += scaleX;
}
currentYScale += scaleY;
}
This works well enough to my needs, my only problem is this: How would I calculate the # of indices and their positions for drawing the triangles? I have somewhat familiarity with indices, but not how to programmatically calculate them, I can only do that statically.
As far as your code above goes, using vertices[x * y]
isn't right - if you use that, then e.g. vert(2,3) == vert(3,2)
. What you want is something like vertices[y * image.width + x]
, but you can do it more efficiently by incrementing a counter (see below).
Here's the equivalent code I use. It's in C# unfortunately, but hopefully it should illustrate the point:
/// <summary>
/// Constructs the vertex and index buffers for the terrain (for use when rendering the terrain).
/// </summary>
private void ConstructBuffers()
{
int heightmapHeight = Heightmap.GetLength(0);
int heightmapWidth = Heightmap.GetLength(1);
int gridHeight = heightmapHeight - 1;
int gridWidth = heightmapWidth - 1;
// Construct the individual vertices for the terrain.
var vertices = new VertexPositionTexture[heightmapHeight * heightmapWidth];
int vertIndex = 0;
for(int y = 0; y < heightmapHeight; ++y)
{
for(int x = 0; x < heightmapWidth; ++x)
{
var position = new Vector3(x, y, Heightmap[y,x]);
var texCoords = new Vector2(x * 2f / heightmapWidth, y * 2f / heightmapHeight);
vertices[vertIndex++] = new VertexPositionTexture(position, texCoords);
}
}
// Create the vertex buffer and fill it with the constructed vertices.
this.VertexBuffer = new VertexBuffer(Renderer.GraphicsDevice, typeof(VertexPositionTexture), vertices.Length, BufferUsage.WriteOnly);
this.VertexBuffer.SetData(vertices);
// Construct the index array.
var indices = new short[gridHeight * gridWidth * 6]; // 2 triangles per grid square x 3 vertices per triangle
int indicesIndex = 0;
for(int y = 0; y < gridHeight; ++y)
{
for(int x = 0; x < gridWidth; ++x)
{
int start = y * heightmapWidth + x;
indices[indicesIndex++] = (short)start;
indices[indicesIndex++] = (short)(start + 1);
indices[indicesIndex++] = (short)(start + heightmapWidth);
indices[indicesIndex++] = (short)(start + 1);
indices[indicesIndex++] = (short)(start + 1 + heightmapWidth);
indices[indicesIndex++] = (short)(start + heightmapWidth);
}
}
// Create the index buffer.
this.IndexBuffer = new IndexBuffer(Renderer.GraphicsDevice, typeof(short), indices.Length, BufferUsage.WriteOnly);
this.IndexBuffer.SetData(indices);
}
I guess the key point is that given a heightmap of size heightmapHeight * heightmapWidth
, you need (heightmapHeight - 1) * (heightmapWidth - 1) * 6
indices, since you're drawing:
2
triangles per grid square3
vertices per triangle(heightmapHeight - 1) * (heightmapWidth - 1)
grid squares in your terrain.