Search code examples
algorithmsubset-sum

Fast solution to Subset sum algorithm by Pisinger


This is a follow-up to my previous question. I still find it very interesting problem and as there is one algorithm which deserves more attention I'm posting it here.

From Wikipedia: For the case that each xi is positive and bounded by the same constant, Pisinger found a linear time algorithm.

There is a different paper which seems to describe the same algorithm but it is a bit difficult to read for me so please - does anyone know how to translate the pseudo-code from page 4 (balsub) into working implementation?

Here are couple of pointers I collected so far:

http://www.diku.dk/~pisinger/95-6.ps (the paper)
https://stackoverflow.com/a/9952759/1037407
http://www.diku.dk/hjemmesider/ansatte/pisinger/codes.html

PS: I don't really insist on precisely this algorithm so if you know of any other similarly performant algorithm please feel free to suggest it bellow.

Edit

This is a Python version of the code posted bellow by oldboy:

class view(object):
    def __init__(self, sequence, start):
        self.sequence, self.start = sequence, start
    def __getitem__(self, index):
        return self.sequence[index + self.start]
    def __setitem__(self, index, value):
        self.sequence[index + self.start] = value

def balsub(w, c):
    '''A balanced algorithm for Subset-sum problem by David Pisinger
    w = weights, c = capacity of the knapsack'''
    n = len(w)
    assert n > 0
    sum_w = 0
    r = 0
    for wj in w:
        assert wj > 0
        sum_w += wj
        assert wj <= c
        r = max(r, wj)
    assert sum_w > c
    b = 0
    w_bar = 0
    while w_bar + w[b] <= c:
        w_bar += w[b]
        b += 1
    s = [[0] * 2 * r for i in range(n - b + 1)]
    s_b_1 = view(s[0], r - 1)
    for mu in range(-r + 1, 1):
        s_b_1[mu] = -1
    for mu in range(1, r + 1):
        s_b_1[mu] = 0
    s_b_1[w_bar - c] = b
    for t in range(b, n):
        s_t_1 = view(s[t - b], r - 1)
        s_t = view(s[t - b + 1], r - 1)
        for mu in range(-r + 1, r + 1):
            s_t[mu] = s_t_1[mu]
        for mu in range(-r + 1, 1):
            mu_prime = mu + w[t]
            s_t[mu_prime] = max(s_t[mu_prime], s_t_1[mu])
        for mu in range(w[t], 0, -1):
            for j in range(s_t[mu] - 1, s_t_1[mu] - 1, -1):
                mu_prime = mu - w[j]
                s_t[mu_prime] = max(s_t[mu_prime], j)
    solved = False
    z = 0
    s_n_1 = view(s[n - b], r - 1)
    while z >= -r + 1:
        if s_n_1[z] >= 0:
            solved = True
            break
        z -= 1
    if solved:
        print c + z
        print n
        x = [False] * n
        for j in range(0, b):
            x[j] = True
        for t in range(n - 1, b - 1, -1):
            s_t = view(s[t - b + 1], r - 1)
            s_t_1 = view(s[t - b], r - 1)
            while True:
                j = s_t[z]
                assert j >= 0
                z_unprime = z + w[j]
                if z_unprime > r or j >= s_t[z_unprime]:
                    break
                z = z_unprime
                x[j] = False
            z_unprime = z - w[t]
            if z_unprime >= -r + 1 and s_t_1[z_unprime] >= s_t[z]:
                z = z_unprime
                x[t] = True
        for j in range(n):
            print x[j], w[j]

Solution

  • // Input:
    // c (capacity of the knapsack)
    // n (number of items)
    // w_1 (weight of item 1)
    // ...
    // w_n (weight of item n)
    //
    // Output:
    // z (optimal solution)
    // n
    // x_1 (indicator for item 1)
    // ...
    // x_n (indicator for item n)
    
    #include <algorithm>
    #include <cassert>
    #include <iostream>
    #include <vector>
    
    using namespace std;
    
    int main() {
      int c = 0;
      cin >> c;
      int n = 0;
      cin >> n;
      assert(n > 0);
      vector<int> w(n);
      int sum_w = 0;
      int r = 0;
      for (int j = 0; j < n; ++j) {
        cin >> w[j];
        assert(w[j] > 0);
        sum_w += w[j];
        assert(w[j] <= c);
        r = max(r, w[j]);
      }
      assert(sum_w > c);
      int b;
      int w_bar = 0;
      for (b = 0; w_bar + w[b] <= c; ++b) {
        w_bar += w[b];
      }
      vector<vector<int> > s(n - b + 1, vector<int>(2 * r));
      vector<int>::iterator s_b_1 = s[0].begin() + (r - 1);
      for (int mu = -r + 1; mu <= 0; ++mu) {
        s_b_1[mu] = -1;
      }
      for (int mu = 1; mu <= r; ++mu) {
        s_b_1[mu] = 0;
      }
      s_b_1[w_bar - c] = b;
      for (int t = b; t < n; ++t) {
        vector<int>::const_iterator s_t_1 = s[t - b].begin() + (r - 1);
        vector<int>::iterator s_t = s[t - b + 1].begin() + (r - 1);
        for (int mu = -r + 1; mu <= r; ++mu) {
          s_t[mu] = s_t_1[mu];
        }
        for (int mu = -r + 1; mu <= 0; ++mu) {
          int mu_prime = mu + w[t];
          s_t[mu_prime] = max(s_t[mu_prime], s_t_1[mu]);
        }
        for (int mu = w[t]; mu >= 1; --mu) {
          for (int j = s_t[mu] - 1; j >= s_t_1[mu]; --j) {
            int mu_prime = mu - w[j];
            s_t[mu_prime] = max(s_t[mu_prime], j);
          }
        }
      }
      bool solved = false;
      int z;
      vector<int>::const_iterator s_n_1 = s[n - b].begin() + (r - 1);
      for (z = 0; z >= -r + 1; --z) {
        if (s_n_1[z] >= 0) {
          solved = true;
          break;
        }
      }
      if (solved) {
        cout << c + z << '\n' << n << '\n';
        vector<bool> x(n, false);
        for (int j = 0; j < b; ++j) x[j] = true;
        for (int t = n - 1; t >= b; --t) {
          vector<int>::const_iterator s_t = s[t - b + 1].begin() + (r - 1);
          vector<int>::const_iterator s_t_1 = s[t - b].begin() + (r - 1);
          while (true) {
            int j = s_t[z];
            assert(j >= 0);
            int z_unprime = z + w[j];
            if (z_unprime > r || j >= s_t[z_unprime]) break;
            z = z_unprime;
            x[j] = false;
          }
          int z_unprime = z - w[t];
          if (z_unprime >= -r + 1 && s_t_1[z_unprime] >= s_t[z]) {
            z = z_unprime;
            x[t] = true;
          }
        }
        for (int j = 0; j < n; ++j) {
          cout << x[j] << '\n';
        }
      }
    }