Search code examples
pythonperformancepython-3.xpython-2.xfactorial

Why is math.factorial much slower in Python 2.x than 3.x?


I get the following results on my machine:

Python 3.2.2 (default, Sep  4 2011, 09:51:08) [MSC v.1500 32 bit (Intel)] on win
32
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> timeit.timeit('factorial(10000)', 'from math import factorial', number=100)
1.9785256226699202
>>>

Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win
32
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> timeit.timeit('factorial(10000)', 'from math import factorial', number=100)
9.403801111593792
>>>

I thought this might have something to do with int/long conversion, but factorial(10000L) isn't any faster in 2.7.


Solution

  • Python 2 uses the naive factorial algorithm:

    1121 for (i=1 ; i<=x ; i++) {
    1122     iobj = (PyObject *)PyInt_FromLong(i);
    1123     if (iobj == NULL)
    1124         goto error;
    1125     newresult = PyNumber_Multiply(result, iobj);
    1126     Py_DECREF(iobj);
    1127     if (newresult == NULL)
    1128         goto error;
    1129     Py_DECREF(result);
    1130     result = newresult;
    1131 }
    

    Python 3 uses the divide-and-conquer factorial algorithm:

    1229 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
    1230 * computed separately, and then combined using a left shift.
    

    See the Python Bugtracker issue for the discussion. Thanks DSM for pointing that out.