Search code examples
pythonalgorithmmathgeometryuniform

Evenly distributing n points on a sphere


I need an algorithm that can give me positions around a sphere for N points (less than 20, probably) that vaguely spreads them out. There's no need for "perfection", but I just need it so none of them are bunched together.

  • This question provided good code, but I couldn't find a way to make this uniform, as this seemed 100% randomized.
  • This blog post recommended had two ways allowing input of number of points on the sphere, but the Saff and Kuijlaars algorithm is exactly in psuedocode I could transcribe, and the code example I found contained "node[k]", which I couldn't see explained and ruined that possibility. The second blog example was the Golden Section Spiral, which gave me strange, bunched up results, with no clear way to define a constant radius.
  • This algorithm from this question seems like it could possibly work, but I can't piece together what's on that page into psuedocode or anything.

A few other question threads I came across spoke of randomized uniform distribution, which adds a level of complexity I'm not concerned about. I apologize that this is such a silly question, but I wanted to show that I've truly looked hard and still come up short.

So, what I'm looking for is simple pseudocode to evenly distribute N points around a unit sphere, that either returns in spherical or Cartesian coordinates. Even better if it can even distribute with a bit of randomization (think planets around a star, decently spread out, but with room for leeway).


Solution

  • In this example code node[k] is just the kth node. You are generating an array N points and node[k] is the kth (from 0 to N-1). If that is all that is confusing you, hopefully you can use that now.

    (in other words, k is an array of size N that is defined before the code fragment starts, and which contains a list of the points).

    Alternatively, building on the other answer here (and using Python):

    > cat ll.py
    from math import asin
    nx = 4; ny = 5
    for x in range(nx):
        lon = 360 * ((x+0.5) / nx)
        for y in range(ny):                                                         
            midpt = (y+0.5) / ny                                                    
            lat = 180 * asin(2*((y+0.5)/ny-0.5))                                    
            print lon,lat                                                           
    > python2.7 ll.py                                                      
    45.0 -166.91313924                                                              
    45.0 -74.0730322921                                                             
    45.0 0.0                                                                        
    45.0 74.0730322921                                                              
    45.0 166.91313924                                                               
    135.0 -166.91313924                                                             
    135.0 -74.0730322921                                                            
    135.0 0.0                                                                       
    135.0 74.0730322921                                                             
    135.0 166.91313924                                                              
    225.0 -166.91313924                                                             
    225.0 -74.0730322921                                                            
    225.0 0.0                                                                       
    225.0 74.0730322921                                                             
    225.0 166.91313924
    315.0 -166.91313924
    315.0 -74.0730322921
    315.0 0.0
    315.0 74.0730322921
    315.0 166.91313924
    

    If you plot that, you'll see that the vertical spacing is larger near the poles so that each point is situated in about the same total area of space (near the poles there's less space "horizontally", so it gives more "vertically").

    This isn't the same as all points having about the same distance to their neighbours (which is what I think your links are talking about), but it may be sufficient for what you want and improves on simply making a uniform lat/lon grid.