I'm trying to find the sum of all positive multiples of 3 and 5 below 1000. After adding the portion that's supposed to remove the multiples of 3 from the sum of the multiples of 5, gprolog will keep spitting out "No" for the query ?- sigma(1000,N).
The problem apparently lies in sigma5, but I can't quite spot it:
sigma(Num, Result) :- sigma3(Num, 3, Result3),
sigma5(Num, 5, Result5),
Result is Result3 + Result5.
sigma3(Num, A, Result) :- A < Num,
Ax is A+3,
sigma3(Num, Ax, ResultX),
Result is ResultX + A.
sigma3(Num, A, Result) :- A >= Num,
Result is 0.
sigma5(Num, A, Result) :- A < Num,
mod3 is A mod 3,
0 \= mod3,
Ax is A+5,
sigma5(Num, Ax, ResultX),
Result is ResultX + A.
sigma5(Num, A, Result) :- A < Num,
mod3 is A mod 3,
0 == mod3,
Ax is A+5,
sigma5(Num, Ax, ResultX),
Result is ResultX.
sigma5(Num, A, Result) :- A >= Num,
Result is 0.
What's the problem with my code?
Prolog has never been popular for it's arithmetic capabilities.
This is due to the need to represent 'term constructors' for symbolic processing, without undue evaluation, so when actual arithmetic is required we must explicitly allocate the 'space' (a variable) for the result, instead that 'passing down' an expression. This lead to rather verbose and unpleasant code.
But using some popular extension, like CLP(FD), available in GProlog as well as SWI-Prolog, we get much better results, not readily available in other languages: namely, a closure of the integer domain over the usual arithmetic operations. For instance, from the SWI-Prolog CLP(FD) library, a 'bidirectional' factorial
n_factorial(0, 1).
n_factorial(N, F) :- N #> 0, N1 #= N - 1, F #= N * F1, n_factorial(N1, F1).
?- n_factorial(X, 3628800).
X = 10 .
Anyway, here is a simple minded solution to the original problem, similar to what you attempted, but using an accumulator to compute result. This simple trick allows writing a tail recursive procedure, that turns out in better efficiency.
sigma(Num, Result) :-
sigma(1, Num, 0, Result).
sigma(N, M, Acc, Tot) :-
( N < M, !,
( (0 is N mod 3 ; 0 is N mod 5)
-> Sum is Acc + N
; Sum is Acc
),
N1 is N + 1,
sigma(N1, M, Sum, Tot)
; Tot is Acc
).
Test:
?- sigma(1000, X).
X = 233168 .