Search code examples
c#garbage-collectionreference-counting

Why no Reference Counting + Garbage Collection in C#?


I come from a C++ background and I've been working with C# for about a year. Like many others I'm flummoxed as to why deterministic resource management is not built-in to the language. Instead of deterministic destructors we have the dispose pattern. People start to wonder whether spreading the IDisposable cancer through their code is worth the effort.

In my C++-biased brain it seems like using reference-counted smart pointers with deterministic destructors is a major step up from a garbage collector that requires you to implement IDisposable and call dispose to clean up your non-memory resources. Admittedly, I'm not very smart... so I'm asking this purely from a desire to better understand why things are the way they are.

What if C# were modified such that:

Objects are reference counted. When an object's reference count goes to zero, a resource cleanup method is called deterministically on the object, then the object is marked for garbage collection. Garbage collection occurs at some non-deterministic time in the future at which point memory is reclaimed. In this scenario you don't have to implement IDisposable or remember to call Dispose. You just implement the resource cleanup function if you have non-memory resources to release.

  • Why is that a bad idea?
  • Would that defeat the purpose of the garbage collector?
  • Would it be feasible to implement such a thing?

EDIT: From the comments so far, this is a bad idea because

  1. GC is faster without reference counting
  2. problem of dealing with cycles in the object graph

I think number one is valid, but number two is easy to deal with using weak references.

So does the speed optimization outweigh the cons that you:

  1. may not free a non-memory resource in a timely manner
  2. might free a non-memory resource too soon

If your resource cleanup mechanism is deterministic and built-in to the language you can eliminate those possibilities.


Solution

  • Brad Abrams posted an e-mail from Brian Harry written during development of the .Net framework. It details many of the reasons reference counting was not used, even when one of the early priorities was to keep semantic equivalence with VB6, which uses reference counting. It looks into possibilities such as having some types ref counted and not others (IRefCounted!), or having specific instances ref counted, and why none of these solutions were deemed acceptable.

    Because [the issue of resource management and deterministic finalization] is such a sensitive topic I am going to try to be as precise and complete in my explanation as I can. I apologize for the length of the mail. The first 90% of this mail is trying to convince you that the problem really is hard. In that last part, I'll talk about things we are trying to do but you need the first part to understand why we are looking at these options.

    ...

    We initially started with the assumption that the solution would take the form of automatic ref counting (so the programmer couldn't forget) plus some other stuff to detect and handle cycles automatically. ...we ultimately concluded that this was not going to work in the general case.

    ...

    In summary:

    • We feel that it is very important to solve the cycle problem without forcing programmers to understand, track down and design around these complex data structure problems.
    • We want to make sure we have a high performance (both speed and working set) system and our analysis shows that using reference counting for every single object in the system will not allow us to achieve this goal.
    • For a variety of reasons, including composition and casting issues, there is no simple transparent solution to having just those objects that need it be ref counted.
    • We chose not to select a solution that provides deterministic finalization for a single language/context because it inhibits interop with other languages and causes bifurcation of class libraries by creating language specific versions.