I have a privately scoped Boost.BiMap in a class, and I would like to export a public view of part of this map. I have two questions about the following code:
class Object {
typedef bimap<
unordered_set_of<Point>,
unordered_multiset_of<Value>
> PointMap;
PointMap point_map;
public:
??? GetPoints(Value v) {
...
}
The first question is if my method of iteration to get the Point
's associated with a Value
is correct. Below is the code I'm using to iterate over the points. My question is if I am iterating correctly because I found that I had to include the it->first == value
condition, and wasn't sure if this was required given a better interface that I may not know about.
PointMap::right_const_iterator it;
it = point_map.right.find(value);
while (it != point_map.right.end() && it->first == val) {
/* do stuff */
}
The second question is what is the best way to provide a public view of the GetPoints (the ???
return type above) without exposing the bimap iterator because it seems that the caller would have to know about point_map.right.end()
. Any efficient structure such as a list of references or a set would work, but I'm a bit lost on how to create the collection.
Thanks!
The first question:
Since you are using the unordered_multiset_of
collection type for the right side of your bimap type, it means that it will have an interface compatible with std::unordered_multimap
. std::unordered_multimap
has the member function equal_range(const Key& key)
which returns a std::pair
of iterators, one pointing to the first element that has the desired key and one that points to one past the end of the range of elements that have the same key. Using that you can iterate over the range with the matching key without comparing the key to the value in the iteration condition.
See http://www.boost.org/doc/libs/1_41_0/libs/bimap/doc/html/boost_bimap/the_tutorial/controlling_collection_types.html and http://en.cppreference.com/w/cpp/container/unordered_multimap/equal_range for references.
The second question:
Constructing a list or other actual container of pointers or references to the elements with the matching values and returning that is inefficient since it's always going to require O(n) space, whereas just letting the user iterate over the range in the original bimap only requires returning two iterators, which only require O(1) memory.
You can either write a member function that returns the iterators directly, e.g.
typedef PointMap::right_const_iterator match_iterator;
std::pair<match_iterator, match_iterator> GetPoints(Value v) {
return point_map.right.equal_range(v);
}
or you can write a proxy class that presents a container-like interface by having begin() and end() member functions returning those two iterators, and have your GetPoints()
member function return an object of that type:
class MatchList {
typedef PointMap::right_const_iterator iterator;
std::pair<iterator, iterator> m_iters;
public:
MatchList(std::pair<iterator, iterator> const& p) : m_iters(p) {}
MatchList(MatchList const&) = delete;
MatchList(MatchList&&) = delete;
MatchList& operator=(MatchList const&) = delete;
iterator begin() { return m_iters.first; }
iterator end() { return m_iters.second; }
};
It's a good idea to make it uncopyable, unmovable and unassignable (like I've done above by deleting the relevant member functions) since the user may otherwise keep a copy of the proxy class and try to access it later when the iterators could be invalidated.
The first way means writing less code, the second means presenting a more common interface to the user (and allows for hiding more stuff in the proxy class if you need to modify the implementation later).